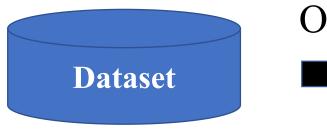
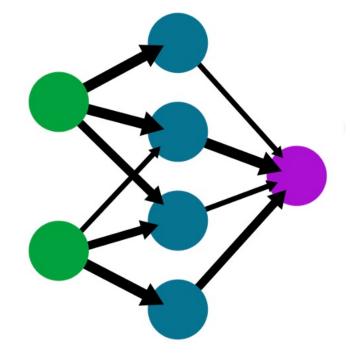
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling

Jianxin Wei, Ergute Bao, Xiaokui Xiao, Yin Yang

SGD with DP: Motivation

• Goal: train a good neural network on an input dataset using SGD.





SGD with DP: Motivation

• The trained model is released as a white box.

[Shokri et al. S&P' 17] [Carlini et al, USENIX' 18]...

SGD with DP: Problem Setting

• Utility goal: train a good model.

• Privacy goal: protect the data.

Dataset Optimizer: SGD

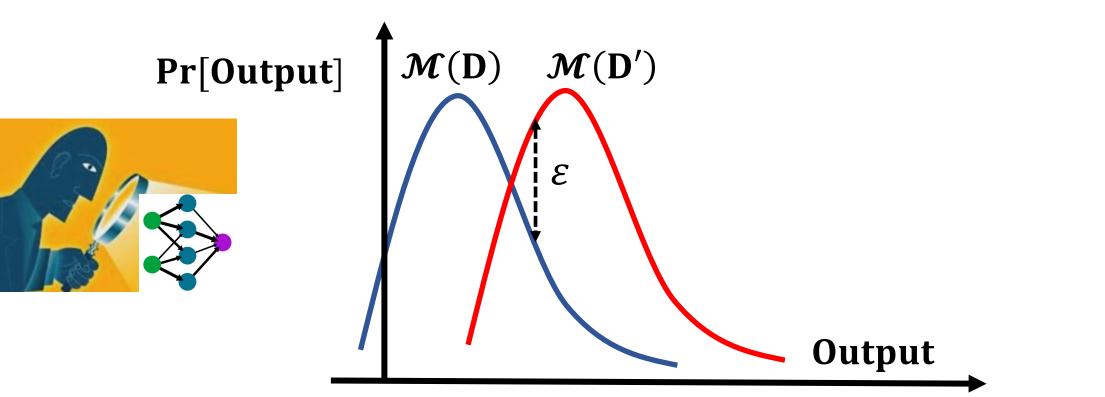
- Observe: gradient updates (stronger threat model than white-box attack)
- Goal: infer the private data

Differential Privacy [DMNS. TCC' 06]

- For any datasets D and D' that differ by one record,
 - The output distributions of their transcripts of updates are similar.

5

• Similarity is quantified by ε and δ .



DPSGD [ACGMMTZ. CCS'16]

Step 1. Batch generation: Sample each with probability *p*.

Step 2. Noise injection:

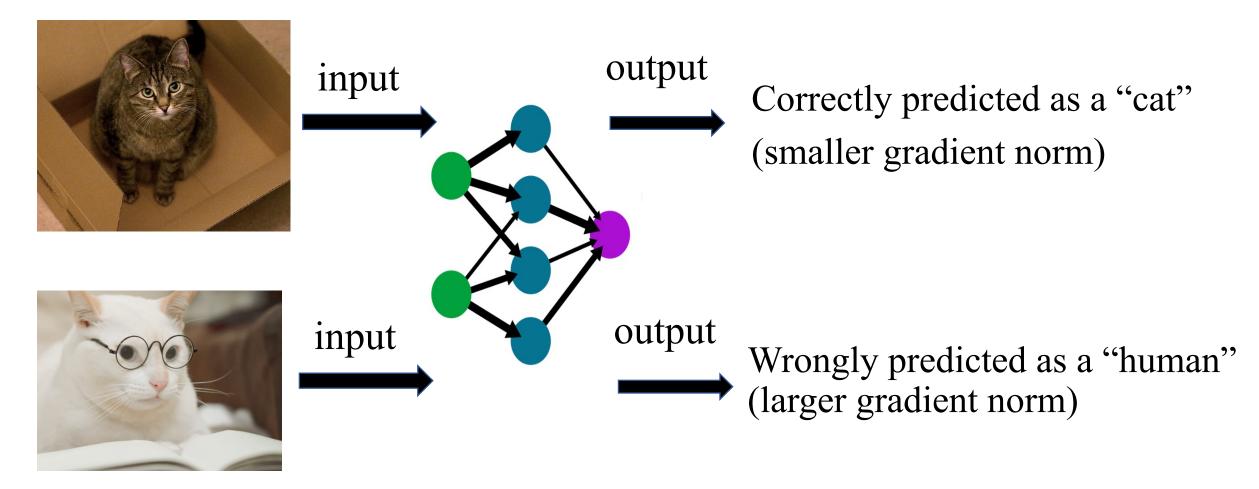
(a) Original gradients. (b) Clipped gradients. 3) Compute gradient sum and add noise $\sum(q(x_i)) + N(0, \sigma^2 C^2 I)$.

Step 3. Update parameters with noisy gradient average.

DPIS: Intuition

- Not all records are equally important to training the model [Katharopoulus and Fleuret, ICML' 18].
- Training records with larger gradient norms should be sampled more frequently.

DPIS: Intuition



Choice of Importance

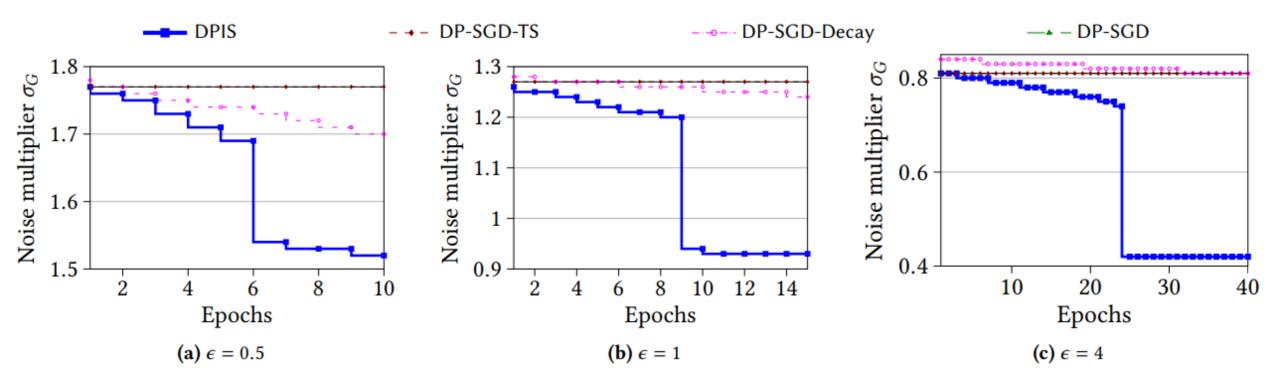
- DPIS samples record x_i with probability proportional to its **importance, denoted as** p_i .
- Natural idea: For record x_i , its importance p_i is **positivelycorrelated** to its gradient norm $||g(x_i)||$.
- Remember to scale back the gradient $g(x_i)$ by factor $1/p_i$, otherwise the gradient sum is a biased estimate.

DPIS: Trade-off

- DPIS differs with DPSGD only in the batch sub-sampling process.
- In DPIS, we let $p_i = \frac{||g(x_i)||}{K}$, with $K = \sum_i^N ||g(x_i)||$. Importance Normalizing Factor
- We show that DPIS improves the accuracy-privacy trade-off at little computation overhead (for the computation of p_i and K).

DPIS: Privacy Analysis

- In MNIST task, fix privacy parameter $\delta = 10^{-5}$, and vary $\varepsilon = 0.5, 1, 4$.
- Compare the noise multipliers for different approaches (smaller is better, i.e., larger signal-noise ratio)



Experiments

- Methods:
 DPIS (ours)
 DP-SGD
 DP-SGD with tempered sigmoid functions (DP-SGD-TS)
 DP-SGD with exponential decay noise (DP-SGD-Decay)
- Results on IMDb (more datasets in our paper):

Method	$\epsilon = 0.5$	$\epsilon = 1$	$\epsilon = 2$	$\epsilon = 3$	$\epsilon = 4$
DPIS	59.1%	62.1%	65.9%	68.3%	70.2%
DP-SGD-TS	57.5%	60.3%	62.8%	65.2%	66.5%
DP-SGD-Decay	56.8%	60.4%	63.6%	66.3%	67.6%
DP-SGD	56.4%	60.3%	63.5%	66.4%	67.4%
(non-DP 79.5%)					12

Conclusion

- DPIS uses a different sub-sampling approach than DPSGD.
- DPIS samples a record with **importance** proportional to its gradient norm.
- DPIS improves the accuracy while maintaining the same privacy.