
CGM: An Enhanced Mechanism for Streaming Data Collection
with Local Differential Privacy

Ergute Bao

National University of Singapore

ergute@comp.nus.edu.sg

Yin Yang

Hamad Bin Khalifa University

yyang@hbku.edu.qa

Xiaokui Xiao

National University of Singapore

xkxiao@nus.edu.sg

Bolin Ding

Alibaba Group

bolin.ding@alibaba-inc.com

ABSTRACT
Local differential privacy (LDP) is a well-established privacy protec-

tion scheme for collecting sensitive data, which has been integrated

into major platforms such as iOS, Chrome, and Windows. The main

idea is that each individual randomly perturbs her data on her local

device, and only uploads the noisy version to an untrusted data

aggregator. This paper focuses on the collection of streaming data

consisting of regular updates, e.g., daily app usage. Such streams,

when aggregated over a large population, often exhibit strong au-
tocorrelations, e.g., the average usage of an app usually does not

change dramatically from one day to the next. To our knowledge,

this property has been largely neglected in existing LDP mech-

anisms. Consequently, data collected with current LDP methods

often exhibit unrealistically violent fluctuations due to the added

noise, drowning the overall trend, as shown in our experiments.

This paper proposes a novel correlated Gaussian mechanism
(CGM) for enforcing (𝜖 , 𝛿)-LDP on streaming data collection, which

reduces noise by exploiting public-known autocorrelation patterns

of the aggregated data. This is done through non-trivial modifica-

tions to the core of the underlying Gaussian Mechanism; in particu-

lar, CGM injects temporally correlated noise, computed through an

optimization program that takes into account the given autocorrela-

tion pattern, data value range, and utility metric. CGM comes with

formal proof of correctness, and consumes negligible computational

resources. Extensive experiments using real datasets from different

application domains demonstrate that CGM achieves consistent

and significant utility gains compared to the baseline method of

repeatedly running the underlying one-shot LDP mechanism.

PVLDB Reference Format:
Ergute Bao, Yin Yang, Xiaokui Xiao, and Bolin Ding. CGM: An Enhanced

Mechanism for Streaming Data Collection with Local Differential Privacy.

PVLDB, 14(11): XXX-XXX, 2021.

doi:10.14778/3476249.3476277

1 INTRODUCTION
Local differential privacy (LDP) [16, 30], which first appeared in Ref.

[21], is a widely accepted framework for the collection and analysis

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476277

of sensitive data. LDP provides a strong, information-theoretic

guarantee on the user’s privacy, and has been deployed in common

software systems, including Apple’s iOS, macOS and Safari [2],

Microsoft Windows 10 [15], and Google Chrome [20]. Specifically,

in the LDP setting, an untrusted data aggregator aims to collect

sensitive information from individual users, and obtain meaningful

statistics from the data, while ensuring the user’s privacy. To do

so, each individual randomly perturbs her data on her local device,

and only reports the noisy version to the data aggregator. In other

words, the data aggregator never has access to the exact values

of the sensitive data. The scale of the random noise injected to

each data record is calibrated to a pre-defined privacy budget of
each individual, as well as the the range of the data values [17].

Intuitively, the random noise provides the user plausible deniability

of what her true sensitive values are, given her reported randomized

version.

So far, most existing mechanisms for enforcing LDP aim at col-

lecting static data, such as the user’s age and gender. In practice,

the data aggregator often wants to collect information that changes

over time through continuous updates, e.g., “How many times have

you visited the CDC website yesterday?” and “How long have you

stayed in that area with a surge of COVID-19 cases in the past

few hours?” In fact, Apple already collects daily energy usage and

number of crashes of the Safari browser with LDP [2]. In these

scenarios, a simple and commonly used approach is to repeatedly

execute a one-shot LDP mechanism once at every timestamp. The
problem with this approach is that it fails to capture the inherent
temporal autocorrelations of the data. For instance, during this hard

time of COVID-19, the number of visits to the government’s public

health website, when averaged over a large population, is unlikely

to drop drastically from one day to the next. On the other hand,

web traffic data collected with the above approach often exhibit

unrealistically violent fluctuations, as shown in our experiments.

Specifically, as explained in Section 2, to satisfy LDP, the individ-

ual’s data (e.g., number of visits to a website) needs to be perturbed

according to the entire range containing all possible data values

(e.g., from zero to the maximum daily visits of any user to any

website), which leads to a high noise scale. Meanwhile, in many

applications, the difference between two consecutive data updates

is usually significantly smaller than the full range of the data item,

e.g., the number of visits to a website in two consecutive days tend

to be similar when averaged over a large population, as mentioned

above. Accordingly, we assume that a publicly known bound 𝐶

that clips the maximum change (i.e., the differential) between the

https://doi.org/10.14778/3476249.3476277
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476277

data item in two adjacent timestamps, and we aim to exploit this

information to reduce the noise scale required to satisfy LDP. Note

that this assumption concerns the maximum value differential of

an aggregate stream over a large population, as elaborated in Sec-

tion 3.1; in particular, individual time series may still exhibit high

fluctuations between consecutive timestamps.

Utilizing the differential clipping bound 𝐶 is non-trivial. Contin-

uing the daily website visits reporting example, if on each day (say,

day 𝑡), we simply let the user report the differential with respect to

the previous day (i.e., the difference between the number of visits

on day 𝑡 and that on day 𝑡 − 1), then the reported value is indeed

bounded by 𝐶 , leading to a smaller noise scale. However, this does

not help the data aggregator, who needs the user’s data item, not

the differential. To reconstruct the user’s number of website visits

on day 𝑡 , the data aggregator needs to sum up (i) her estimated

number of visits on day 𝑡 −1 and (ii) the reported differential on day

𝑡 . The error of this sum is strictly higher than that of (i) alone due

to the accumulated noise of the two components. In other words,

the error of the reconstructed user’s data item increases with time.

As we elaborate later in Section 3.2, this scheme of reporting value

differentials often leads to noisier data value estimates compared

to the naive method of ignoring𝐶 and directly collecting the user’s

data with a one-shot LDP mechanism at each timestamp.

In this paper, we propose a novel solution, namely correlated
Gaussian mechanism (CGM), that properly utilizes the knowledge

of the differential bound 𝐶 in continual data collection with LDP.

Specifically, similar to the naive method, CGM lets the user directly

report a perturbed version of her current sensitive value at each

timestamp, and nothing else. Meanwhile, CGM makes non-trivial

modifications to the core math of the underlying LDP mechanism

to exploit the knowledge of 𝐶 and reduce the noise scale. In partic-

ular, the random noise injected according to CGM is correlated at

adjacent timestamps, and the noise vector is solved from an opti-

mization program with the objective of maximizing a given data

utility function, e.g., mean square error of the perturbed values with

respect to the exact ones.

We formally prove that CGM satisfies (𝜖 , 𝛿)-LDP, and analyze

its expected utility gains compared to the baseline method of re-

peatedly applying a one-shot mechanism at every timestamp. In

particular, the utility enhancement brought by CGM is more pro-

nounced for longer sequences with stronger data correlations, i.e.,
a smaller value differential bound 𝐶 compared to the range of the

corresponding data values. Further, the computational overhead

of CGM is negligible, even for long sequences. Extensive experi-

ments with real data from different application domains confirm

the significant advantage of CGM in terms of result utility.

In the following, Section 2 provides necessary background on

LDP. Section 3 defines the problem of streaming data collection with

LDP, and discusses naive solutions. Section 4 presents the proposed

solution CGM. Section 5 formally proves the correctness of CGM

and analyzes its performance. Section 6 contains a thorough set of

experimental evaluations. Section 7 reviews related work. Finally,

Section 8 concludes the paper with future directions.

2 PRELIMINARIES
2.1 Local Differential Privacy
We follow the (𝜖, 𝛿)-local differential privacy (LDP) framework for

privacy preserving data collection and analysis, defined as follows.

Definition 2.1 ((𝜖, 𝛿)-Local Differential Privacy [17]). A random-

ized mechanismM satisfies (𝜖, 𝛿)-local differential privacy (LDP) if
and only if

Pr[M(𝑥) ∈ O] ≤ exp(𝜖) · Pr[M(𝑥 ′) ∈ O] + 𝛿, (1)

for any set of output O ⊆ 𝑅𝑎𝑛𝑔𝑒 (M) and any inputs 𝑥 and 𝑥 ′.

In the above definition, the input 𝑥 is the sensitive data held

by an individual, andM(𝑥) is the perturbed version reported to

the data aggregator. Intuitively, an (𝜖, 𝛿)-LDP algorithm ensures

that the output distribution for an individual with data 𝑥 is similar

to that for an individual with data 𝑥 ′, for all possible 𝑥 and 𝑥 ′

in the data domain. The similarity of the output distributions is

quantified by parameters 𝜖 and 𝛿 , which determine the strength of

privacy guaranteed by the mechanismM. Smaller 𝜖 and 𝛿 indicate

a stronger privacy guarantee, and vice versa.

The privacy parameter 𝜖 is commonly referred to as the privacy
budget of the individual, and 𝛿 can be roughly viewed as a proba-
bility of failure, i.e., when the individual’s privacy loss, measured

by log

(
Pr[M(𝑥) ∈O]
Pr[M(𝑥 ′) ∈O]

)
, exceeds 𝜖 . Parameter 𝜖 is considered as a

budget in part due to a classic composition rule [19], which states

that given any two mechanismsM1 andM2 satisfying (𝜖1, 𝛿1)- and

(𝜖2, 𝛿2)-differential privacy respectively, their combination satisfies

(𝜖1 + 𝜖2, 𝛿1 + 𝛿2)-differential privacy. In other words, when multi-

ple mechanisms are applied (e.g., for reporting multiple updates at

different timestamps), their consumption of the privacy budget 𝜖 ac-

cumulates in an additive manner. This composition result, however,

is in fact rather pessimistic, as we show in the next subsection.

Post-processing (either randomized or deterministic), performed

after a differentially private mechanism, does not affect the privacy

guarantee, according to the following lemma.

Lemma 2.2 (Post-processing [17]). Let M be an (𝜖, 𝛿)-LDP
mechanism, and 𝐺 be a function whose input is the output ofM.
Then, 𝐺 (M) also satisfies (𝜖, 𝛿)-LDP.

2.2 Analytic Gaussian Mechanism
Let 𝐹 be a function that maps the input from the domainR𝑑 intoR𝑑 ,
where 𝑑 is the dimensionality of the underlying data. To convert 𝐹

into a differentially private mechanism, a canonical approach is to

inject random noise into the output of 𝐹 . The scale of the noise is

calibrated according to the sensitivity of 𝐹 , defined as follows.

Definition 2.3 (Sensitivity [17]). The sensitivity of a function

𝐹 : R𝑑 → R𝑑 , denoted as 𝑆 (𝐹), is defined as

𝑆 (𝐹) = max

𝑥,𝑥 ′
∥𝐹 (𝑥 ′) − 𝐹 (𝑥)∥,

where 𝑥 and 𝑥 ′ are any pair of valid inputs to function 𝐹 and ∥·∥ is
a norm.

In this work, we focus on the 𝐿2 norm, denoted as ∥ · ∥ henceforth.
A classic mechanism for enforcing (𝜖, 𝛿)-differential privacy is the

Gaussian mechanism [19], which injects random Gaussian noise

Table 1: List of Notations

Symbol Description Section
M A differentially private mechanism 2

O A set of outputs of mechanismM 2

𝜖, 𝛿 Privacy parameters 2

𝑆 (𝐹) 𝐿2 sensitivity of function 𝐹 2

𝑛 Number of individuals in the application 3

𝑙 Length of each data stream 3

𝑥𝑘,𝑖 𝑖-th element of the 𝑘-th data stream 3

𝑑 Dimensionality of each element 𝑥𝑘,𝑖 3

𝐶 Differential bound of adjacent data items 3

Δ𝑘,𝑖 𝑖-th differential of the 𝑘-th data stream 3

𝑓𝑖 𝑖-th function of interest 4

𝑓 ∗
𝑖

Perturbed version of 𝑓𝑖 4

b𝑖 Surrogate function for 𝑓𝑖 4

b∗
𝑖

Perturbed version of b𝑖 4

𝛾𝑖 Noise injected into 𝑓𝑖 4

𝛼𝑖 𝑗 Parameters in CGM 4

[𝑖 𝑖-th fresh noise 4

𝜎𝑖 Scale of the 𝑖-th fresh noise 4

𝑟𝑖 Reuse ratio in the 𝑖-th estimate 4

into the output of 𝐹 based on its 𝐿2 sensitivity. Subsequent work

found that the noise scale of the original Gaussian mechanism can

be reduced through a more careful analysis. The modern, state-of-

the-art version is the analytic Gaussian mechanism, as follows.

Lemma 2.4 (Analytic Gaussian Mechanism [3, 42]). Let 𝐹 :

R𝑑 → R𝑑 be a function. The analytic Gaussian mechanism that
injects Gaussian noiseN

(
0, 𝜎2 · I

)
into the output of 𝐹 satisfies (𝜖, 𝛿)-

differential privacy, if and only if

𝑆 (𝐹)
𝜎
≤
√
2

(√
𝜒2 + 𝜖 − 𝜒

)
, (2)

where 0 and I are a zero vector and a𝑑×𝑑 identity matrix, respectively,
and 𝜒 is the solution to

erfc (𝜒) − exp(𝜖) · erfc
(√

𝜒2 + 𝜖
)
= 2𝛿, (3)

and erfc() denotes the complementary error function, i.e.,

erfc(𝑥) ≜ 1 − 2

√
𝜋

∫ 𝑥

0

𝑒−𝑡
2

d𝑡 .

According to Eq. (2), the scale of the Gaussian noise, controlled

by the standard deviation 𝜎 , is calibrated to the sensitivity 𝑆 (𝐹) of
the function of interest 𝐹 . In our context, 𝐹 is simply an identity

function when the individual reports her data item 𝑥 . Hence, when

the user reports her data for 𝑙 timestamps, the overall sensitivity is

proportional to

√
𝑙 , meaning that the noise scale 𝜎 = 𝑂 (

√
𝑙). This is

a much tighter bound than the classic composition rule mentioned

at the end of Section 2.1, since if we were to split the privacy budget

𝜖 into 𝑙 equal shares and apply the Gaussian mechanism on each

timestamp using a share of the budget, then the overall noise scale

would grow linearly with 𝑙 . Table 1 summarizes frequent notations

used throughout the paper.

3 PROBLEM SETTING
Section 3.1 clarifies the problem studied in this paper. Section 3.2

describes naive solutions and their limitations.

3.1 Problem Definition
Recall from Section 1 that in our target application setting, an

untrusted data aggregator aims to collect sensitive data from a

set of individual users at regular time intervals, while satisfying

LDP. Note that according to Section 2, with finite overall privacy

parameters 𝜖 and 𝛿 , the number of updates that a user can report to

the aggregator is necessarily finite. In practice, major aggregators

circumvent this problem by requiring the user to renew her privacy

budget periodically, e.g., 𝜖 = 2 each day for some functionalities of

iOS [2], which enables data collection indefinitely. The proposed

solution is compatible with such settings, which is an important

consideration in our mechanism design. Without loss of generality,

in the following we focus on finite streams of length 𝑙 , and privacy

parameters 𝜖 , 𝛿 for the whole stream; we describe the adaptation

to infinite streams and periodically renewing privacy parameters

whenever necessary.

Formally, let 𝑛 be the total number of users. Each user 𝑘 ∈
{1, 2, . . . , 𝑛} possesses a private data item 𝑥𝑘,𝑖 at each time instance

𝑖 ∈ {1, 2, . . . , 𝑙}. Each such data item 𝑥𝑘,𝑖 is a vector of fixed dimen-

sionality, denoted as 𝑑 , i.e., 𝑥𝑘,𝑖 ∈ R𝑑 . Without loss of generality, we

assume that each data item 𝑥𝑘,𝑖 lies within a 𝑑-dimensional hyper-

sphere with unit diameter, i.e., ∥𝑥𝑘,𝑖 ∥ ≤ 1

2
, where ∥ · ∥ denotes the

𝐿2 norm as mentioned in Section 2. This property can be ensured

by scaling all data vectors using their maximum possible 𝐿2 norm,

based on public knowledge in the application domain. Note that

for each individual 𝑘 , her data items gradually arrive over time: at

each timestamp 𝑖 , she has access to all previous data items, namely,

𝑥𝑘,1, . . ., 𝑥𝑘,𝑖−1, and does not have access to future data items after

time 𝑖 .

As explained in Section 1, we focus on scenarios inwhich the data

items in an aggregate stream exhibit publicly-known autocorrela-

tions. In particular, we assume that the difference between any two

adjacent data items in the aggregate stream is bounded by a public

constant 𝐶 ∈ (0, 1), referred to as the differential bound.1 In the

LDP setting, the data aggregator collects perturbed values before

computing the aggregate over the entire populations, meaning that

the differential bound𝐶 on the aggregate stream cannot be directly

utilized in the LDPmechanism. Hence, in our proposed solution, we

enforce bound 𝐶 on individual time series: formally, for any user 𝑘

and any timestamp 𝑖 > 1, we enforce that ∥𝑥𝑘,𝑖−𝑥𝑘,𝑖−1∥ ≤ 𝐶 , which

can be done, e.g., by clipping out-of-bound outlier items. Note that

since the differential bound assumption is over the aggregate stream

rather than individual series, such clipping (say, for data item 𝑥𝑘,𝑖)

may introduce a temporarily high bias in the estimate at the data

aggregator for one particular stream (i.e., stream 𝑘) at a particular

timestamp (time 𝑖), when user 𝑘’s data stream experiences a sudden

fluctuation at time 𝑖 .

1
In some applications, the streaming data can also be autocorrelated with a lag higher

than 1. For instance, for data exhibiting strong weekly periodicity patterns, a daily

update 𝑥𝑘,𝑖 can be more strongly correlated with the update one week ago (i.e., 𝑥𝑘,𝑖−7)
than the one yesterday (𝑥𝑘,𝑖−1). We discuss such cases at the end of this subsection.

On the other hand, intuitively, as long as the differential bound

𝐶 holds for the average user over a large population, the bias in-

troduced in such clipping can be more than compensated by the

reduction of noise scale required to satisfy LDP, as shown in our

experiments in Section 6.

Our goal is to find a randomized mechanismM which allows

each user to release her private data to the untrusted data aggrega-

tor, while satisfying (𝜖 , 𝛿)-LDP. Formally, the problem of streaming

data collection with LDP is defined as follows.

ProblemDefinition. Given𝑛 users, each possessing a data stream
with 𝑙 timestamps 𝑥𝑘,1, . . ., 𝑥𝑘,𝑙 , satisfying, each data item ∥𝑥𝑘,𝑖 ∥ ≤
1

2
(𝑖 = 1, . . . , 𝑙 , and 𝑘 = 1, . . . , 𝑛), design a mechanism M such

that at each time instance 𝑖 ,M takes as input a user’s data items:
(𝑥𝑘,1, . . . , 𝑥𝑘,𝑖), and outputs 𝑥∗𝑘,𝑖 , with the following objective:

min

1

𝑙

𝑙∑
𝑖=1

E
[
∥𝑥𝑘,𝑖 − 𝑥∗𝑘,𝑖 ∥

2

]
, (4)

subject to the constraint thatM satisfies (𝜖 , 𝛿)-LDP, i.e.,

Pr

[
M

(
𝑥𝑘,1, . . . , 𝑥𝑘,𝑙

)
∈ O

]
≤ exp(𝜖) · Pr

[
M

(
𝑥 ′
𝑘,1

, . . . , 𝑥 ′
𝑘,𝑙

)
∈ O

]
+ 𝛿, (5)

for any input data stream (𝑥𝑘,1, . . . , 𝑥𝑘,𝑙), and any valid data stream
(𝑥 ′

𝑘,1
, . . . , 𝑥 ′

𝑘,𝑙
) from the same data domain, and any set of outputs

O ⊆ 𝑅𝑎𝑛𝑔𝑒 (M).

Discussions. So far, we have focused on the case where the dif-

ferential bound 𝐶 applies to two adjacent timestamps, i.e., ∥𝑥𝑘,𝑡 −
𝑥𝑘,𝑡−1∥ ≤ 𝐶 . In applications where the data exhibit a periodic pat-

tern, it is possible that a new data item is correlated with a previous

one that is 𝑗 > 1 timestamps behind, i.e., ∥𝑥𝑘,𝑡 − 𝑥𝑘,𝑡−𝑗 ∥ ≤ 𝐶 .

For instance, with daily updates, we can set 𝑗 = 7 to capture the

situation where the data streams demonstrate strong weekly period-

icity. This case can be transformed to our problem, by conceptually

splitting each data stream into 𝑗 sub-streams. In the above example

where the data exhibit a weekly autocorrelation, we split the stream

into 7 sub-streams corresponding to Monday, Tuesday, . . ., Sunday.

Then, each sub-stream would satisfy the value differential bound

on adjacent timestamps, and our proposed solution directly applies.

Our setting assumes an additive bound 𝐶 of the maximum dif-

ference between data values on two adjacent timestamps. When all

data values are positive, the proposed solution can also be applied

to the case with a multiplicative bound on the ratio between two

consecutive timestamps, by taking logarithm of all data items in a

pre-processing step. In the following, we focus on the case with an

additive bound.

3.2 Naive Solutions
As mentioned in Section 1, a naive solution for our problem is to

execute a one-shot LDP mechanism at every timestamp. Specifi-

cally, at each timestamp 𝑖 , each user 𝑘 applies the analytic Gaussian

mechanism (defined in Lemma 2.4) to perturb her value 𝑥𝑘,𝑖 , as

shown in Algorithm 1. To do so, the algorithm independently sam-

ples a noise vector from the Gaussian distribution N(0, 𝜎2I), adds
the noise to 𝑥𝑘,𝑖 , and outputs the perturbed value 𝑥∗

𝑘,𝑖
.

Algorithm 1: Perturbing data items directly

Input: data items {𝑥𝑘,𝑖 }𝑙𝑖=1, where ∥𝑥𝑘,𝑖 ∥ ≤
1

2
and

∥𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1∥ ≤ 𝐶 , privacy parameters 𝜖, 𝛿 .

Output: perturbed estimates {𝑥∗
𝑘,𝑖
}𝑙
𝑖=1

.

1 for 𝑖 = 1 to 𝑙 do
2 𝑥∗

𝑘,𝑖
←− 𝑥𝑘,𝑖 + N(0, 𝜎2I); where 𝜎 is computed as in

Eq. (7) and I is the 𝑑 × 𝑑 dimension identity matrix.

3 Output 𝑥∗
𝑘,𝑖
;

Algorithm 2: Perturbing value differentials

Input: data items {𝑥𝑘,𝑖 }𝑙𝑖=1, where ∥𝑥𝑘,𝑖 ∥ ≤
1

2
and

∥𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1∥ ≤ 𝐶 , privacy parameters 𝜖, 𝛿 .

Output: perturbed estimates {𝑥∗
𝑘,𝑖
}𝑙
𝑖=1

.

1 for 𝑖 = 1 to 𝑙 do
2 if 𝑖 = 1 then
3 Output 𝑥∗

𝑘,𝑖
computed as in Algorithm 1;

4 else
5 Δ∗

𝑘,𝑖
←− 𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1 + N(0, 4𝐶2𝜎2I); where 𝜎 is

computed as in Eq. (7) and I is the 𝑑 × 𝑑 dimension

identity matrix.

6 Output 𝑥∗
𝑘,𝑖

= 𝑥∗
𝑘,𝑖−1 + Δ

∗
𝑘,𝑖
;

The following Lemma formally states the utility and privacy

guarantee of Algorithm 1. The proof follows by applying Lemma 2.4

on the identity function with the sensitivity

√
𝑙 , since each data

item 𝑥𝑘,𝑖 satisfies ∥𝑥𝑘,𝑖 ∥ ≤ 1

2
as described in Section 3.1. In terms

of utility, 𝑥∗
𝑘,𝑖

is an unbiased estimator of 𝑥𝑘,𝑖 , since the Gaussian

noise injected is of mean 0. The expected mean squared error for

the 𝑘-th individual with respect to the 𝑖-th timestamp is simply the

sum of variance across all dimensions, i.e., 𝜎2 · 𝑑 .

Lemma 3.1. Algorithm 1 satisfies (𝜖, 𝛿)-LDP with expected error:

1

𝑙

𝑙∑
𝑖=1

E
[
∥𝑥∗

𝑘,𝑖
− 𝑥𝑘,𝑖 ∥2

]
= 𝜎2𝑑, (6)

where 𝑑 is the dimensionality for each element 𝑥𝑘,𝑖 , and 𝑙 is the length
of the data stream. In addition, 𝜎 satisfies

√
𝑙

𝜎
≤
√
2

(√
𝜒2 + 𝜖 − 𝜒

)
, (7)

and 𝜒 is defined in Eq. (3). The expectation is taken over the random-
ness in the algorithm.

Clearly, Algorithm 1 does not use the differential bound 𝐶 at all.

To utilize 𝐶 , another naive solution is to let each user release value

differentials, as mentioned in Section 1. We outline this approach

in Algorithm 2. Specifically, at the first timestamp, each user 𝑘

perturbs her first data item 𝑥𝑘,1 similarly as Algorithm 1. After

that, at each timestamp 𝑖 > 1, the user perturbs the differential

Δ𝑘,𝑖 ≜ 𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1 using the analytic Gaussian mechanism, where

the scale of the noise is calibrated to the range of the differential

Δ𝑘,𝑖 , i.e., 2𝐶 , since for any input data stream (𝑥𝑘,1, . . . , 𝑥𝑘,𝑙), any

valid data stream (𝑥 ′
𝑘,1

, . . . , 𝑥 ′
𝑘,𝑙
) from the same data domain, we

have ∥Δ𝑘,𝑖 − Δ′𝑘,𝑖 ∥ ≤ ∥Δ𝑘,𝑖 ∥ + ∥Δ
′
𝑘,𝑖
∥ ≤ 2𝐶 .

Algorithm 2 satisfies (𝜖 , 𝛿)-LDP, since (i) it performs the same

operation as Algorithm 1 at timestamp 1, and (ii) at timestamp

𝑖 = 2, . . . , 𝑙 , the algorithm perturbs Δ𝑘,𝑖 , which has sensitivity 2𝐶;

therefore, the required noise scale for perturbing Δ𝑘,𝑖 is 2𝐶 · 𝜎 ,
where 𝜎 is the noise scale needed for perturbing 𝑥𝑘,𝑖 , which leads to

the noise variance 4𝐶2𝜎2 shown in Algorithm 2. We omit a formal

proof for brevity.

It is easy to see that Algorithm 2 always yields worse utility than

Algorithm 1, as mentioned in Section 1. This is due to the fact that

the amount of noise in 𝑥∗
𝑘,𝑖

(where 𝑖 ≥ 2) is the sum of all noise

in 𝑥∗
𝑘,1

and Δ∗
𝑘,𝑗

, 2 ≤ 𝑗 ≤ 𝑖 , which grows linearly with respect to 𝑖 .

Hence, Algorithm 2 incurs error:

1

𝑙

𝑙∑
𝑖=1

E
[
∥𝑥∗

𝑘,𝑖
− 𝑥𝑘,𝑖 ∥2

]
= 𝜎2𝑑

(
1 + 2𝐶2 (𝑙 − 1)

)
, (8)

which is larger than the error of Algorithm 1, i.e., 𝜎2𝑑 (Lemma 3.1).

In the next section, we show how to properly utilize the differential

bound 𝐶 to reduce error.

Discussion. In Algorithm 2, for each user 𝑘 , the noise contained in

an earlier data item, say, 𝑥∗
𝑘,𝑗

, is accumulated to all later data items,

𝑥∗
𝑘,𝑖

, 𝑖 > 𝑗 . Hence, it is theoretically possible to reduce overall error

by letting the user report earlier data items with a lower amount of

noise, and later ones with larger noise, so that the overall mecha-

nism still satisfies (𝜖 , 𝛿)-LDP for all 𝑙 timestamps. This modification,

however, is incompatible with the setting where the user allows a

fixed privacy budget per timestamp, a common practice in current

LDP implementations as described in the beginning of Section 3.1.

To see this, observe that in both Algorithms 1 and 2, the data re-

lease at each timestamp consumes the same amount of privacy

budget, which satisfies (𝜖 ′, 𝛿 ′)-LDP where 𝜖 ′ ≈ 𝜖√
𝑙
, 𝛿 ′ ≈ 𝛿

𝑙
for a

large 𝑙 . Breaking the symmetry of noise at different timestamps

would invalidate this property, and, thus, is incompatible with the

periodically refreshing privacy budget setting.

4 CORRELATED GAUSSIAN MECHANISM
In this section, we present the proposed Correlated Gaussian Mech-

anism (CGM). In the following, we first use a simple example to

explain the rationale of using correlated Gaussian noise in Sec-

tion 4.1. Then, we formalize CGM in the general form in Section 4.2,

and apply it to our problem setting in Section 4.3.

4.1 Rationale
Let 𝐹 be a function that maps any input data 𝑥 from a data universe

to a vector (𝑓1 (𝑥), 𝑓2 (𝑥)), where 𝑓1 (𝑥) and 𝑓2 (𝑥) can be any two

values in [− 1

2
, + 1

2
], as long as their differential satisfies that |𝑓1 (𝑥)−

𝑓2 (𝑥) | ≤ 𝐶 < 1

2
for some constant 𝐶 . Then, the sensitivity of 𝐹 is:

𝑆 (𝐹) = max

𝑥,𝑥 ′
∥𝐹 (𝑥) − 𝐹 (𝑥 ′)∥ =

√
2.

The maximum is taken overall all possible data pairs 𝑥 and 𝑥 ′ that
are from the same data universe. For instance, we have ∥𝐹 (𝑥) −
𝐹 (𝑥 ′)∥ =

√
2 when 𝐹 (𝑥) = (− 1

2
,− 1

2
) and 𝐹 (𝑥 ′) = (+ 1

2
, + 1

2
).

Suppose that we are to release 𝐹 (𝑥) under (𝜖, 𝛿)-LDP using the

analytic Gaussian mechanism in Lemma 2.4, with privacy param-

eters, say, 𝜖 = 1 and 𝛿 = 10
−5
. Then, by Lemma 2.4, the analytic

Gaussian mechanism would inject independent Gaussian noise

N
(
0, 𝜎2

)
into 𝑓1 (𝑥) and 𝑓2 (𝑥), with parameter 𝜎 set to

𝜎 =

√
2√

2(
√
𝜒2+𝜖−𝜒)

≈ 5.28, (9)

where 𝜒 ≈ 2.54 is the solution to Eq. (3). Observe that 𝜎 is decided

solely by the sensitivity of 𝐹 , meaning that the analytic Gaussian

mechanism fails to utilize the correlation between 𝑓1 and 𝑓2, i.e.,
|𝑓1 (𝑥) − 𝑓2 (𝑥) | ≤ 𝐶 < 1

2
for any input 𝑥 .

Next, consider an alternative approach that injects correlated

Gaussian noise into 𝑓1 and 𝑓2 as follows. First, we sample a Gaussian

noise [1 fromN(0, 𝜎2) with 𝜎 ≈ 5.28 (as in Eq. (9)), and add it to 𝑓1
to obtain a noisy value 𝑓 ∗

1
= 𝑓1 + [1. After that, instead of directly

injecting noise into 𝑓2, we consider an alternative function

b2 = 𝛼 · 𝑓2 − 𝛽 · 𝑓1,
where 𝛼 = 1 + (1 − 2𝐶)2 and 𝛽 = (1 − 2𝐶) are derived from public

information 𝐶 , and, thus, are not sensitive information. As will be

clarified shortly, b2 is used to facilitate the generation of noise for

𝑓2, while 𝛼 and 𝛽 are constants that decide how the noise in 𝑓2
should correlate with that in 𝑓1.

Given b2, we sample another Gaussian noise [2 from N(0, 𝜎2)
with the same 𝜎 ≈ 5.28 as in Eq. (9), and compute a noisy value

b∗
2
= b2+[2. After that, we use b∗

2
and 𝑓 ∗

1
to generate a noisy version

𝑓 ∗
2
of 𝑓2:

𝑓 ∗
2
=

1

𝛼
b∗
2
+ 𝛽

𝛼
𝑓 ∗
1
.

Then, we have

𝑓 ∗
2
=

1

𝛼
b2 +

1

𝛼
[2 +

𝛽

𝛼
𝑓1 +

𝛽

𝛼
[1

= 𝑓2 −
𝛽

𝛼
𝑓1 +

1

𝛼
[2 +

𝛽

𝛼
𝑓1 +

𝛽

𝛼
[1

= 𝑓2 +
1

𝛼
[2 +

𝛽

𝛼
[1 .

In other words, the noise in 𝑓 ∗
2
is a linear combination of the noise

in b∗
2
and 𝑓 ∗

1
.

The benefit of this correlated noise approach is that it reduces

the noise amount in 𝑓 ∗
2
. In particular, the variance of 𝑓 ∗

2
is:

1

𝛼2
𝜎2 + 𝛽2

𝛼2
𝜎2 =

𝜎2

1 + (1 − 2𝐶)2
≈ (5.28)2

1 + (1 − 2𝐶)2
.

In contrast, if we inject independent Gaussian noise into 𝑓1 and 𝑓2,

the variance of the noise in 𝑓 ∗
2
would be 𝜎2 ≈ (5.28)2, according to

Eq. (9), which is strictly larger than
𝜎2

1+(1−2𝐶)2 since 𝐶 < 1

2
.

In addition, the correlated noise approach still ensures (𝜖, 𝛿)-DP
with 𝜖 = 1 and 𝛿 = 10

−5
, as explained in the following. Observe

that for any two inputs 𝑥 and 𝑥 ′,��b2 (𝑥) − b2 (𝑥 ′)��
=
��𝛼 · (𝑓2 (𝑥) − 𝑓2 (𝑥 ′)) − 𝛽 · (𝑓1 (𝑥) − 𝑓1 (𝑥 ′))

��
≤(𝛼 − 𝛽) ·

��𝑓2 (𝑥) − 𝑓2 (𝑥 ′)
�� + 𝛽 · |𝑓2 (𝑥) − 𝑓1 (𝑥) |

+ 𝛽 ·
��𝑓1 (𝑥 ′) − 𝑓2 (𝑥 ′)

��
≤(𝛼 − 𝛽) + 𝛽 ·𝐶 + 𝛽 ·𝐶 ≤ 1.

Let 𝐹 ′ be a function takes any input data 𝑥 , and maps it to a vector

[𝑓1 (𝑥), b2 (𝑥)]. The 𝐿2 sensitivity of 𝐹 ′ is

𝑆 (𝐹 ′) = max

𝑥,𝑥′
∥𝐹 ′ (𝑥) − 𝐹 ′ (𝑥′) ∥

= max

𝑥,𝑥′

√
(𝑓1 (𝑥) − 𝑓1 (𝑥′))2 + (b2 (𝑥) − b2 (𝑥′))2

≤ max

𝑥,𝑥′

√
1 + 1 =

√
2.

Then, by Lemma 2.4, injecting Gaussian noise [1 and [2 into 𝑓1 (𝑥)
and b2 (𝑥), respectively, achieves (𝜖, 𝛿)-DP with 𝜖 = 1 and 𝛿 = 10

−5
.

Since 𝑓 ∗
2
(𝑥) is obtained by post-processing b∗

2
(𝑥) and 𝑓 ∗

1
(𝑥), by

Lemma 2.2, the generation of 𝑓 ∗
1
(𝑥) and 𝑓 ∗

2
(𝑥) also satisfies (𝜖, 𝛿)-

DP with 𝜖 = 1 and 𝛿 = 10
−5
.

The above example shows that when two functions 𝑓1 and 𝑓2’s

outputs have a small difference |𝑓1 (𝑥) − 𝑓2 (𝑥) | for any input data

𝑥 , we can reduce the amount of noise required to make 𝑓1 and 𝑓2
differentially private, by correlating the noise in 𝑓2 with that in 𝑓1.

In what follows, we formalize this correlated noise approach for

the general case when we inject correlated noise into an arbitrary

number of functions.

4.2 Formalization of CGM in the General Form
Let 𝑓1, 𝑓2, . . . , 𝑓𝑙 be a sequence of functions, each of which maps the

input data 𝑥 to a vector in R𝑑 . CGM takes as input 𝑓1, 𝑓2, . . . , 𝑓𝑙 and

constants 𝜎𝑖 , 𝛼𝑖 𝑗 (1 ≤ 𝑗 < 𝑖 ≤ 𝑙), and injects into each 𝑓𝑖 a Gaussian

noise 𝛾𝑖 as follows:

𝛾𝑖 = [𝑖 +
𝑖−1∑
𝑗=1

𝛼𝑖 𝑗 · 𝛾 𝑗 , (10)

where [𝑖 is sampled from a Gaussian distribution N
(
0, 𝜎2

𝑖
· I

)
. In

other words, the noise 𝛾𝑖 in 𝑓𝑖 is a linear combination of a “fresh”

Gaussian variable [𝑖 and the “old” noise 𝛾 𝑗 injected into each 𝑓𝑗
(𝑗 ≤ 𝑖 − 1). Note that in the special case when 𝛼𝑖 𝑗 = 0 for all

1 ≤ 𝑗 < 𝑖 ≤ 𝑙 , CGM degenerates to the vanilla Gaussian mechanism

that injects independent Gaussian noise into each 𝑓𝑖 .

To formulate the privacy guarantee of CGM, we first define a set

of surrogate functions Ξ = {b1, b2, . . . , b𝑙 }, such that for any data 𝑥

and any 1 ≤ 𝑖 ≤ 𝑙 ,

b𝑖 (𝑥) =
1

𝜎𝑖

©«𝑓𝑖 (𝑥) −
𝑖−1∑
𝑗=1

(
𝛼𝑖 𝑗 · 𝑓𝑗 (𝑥)

)ª®¬ . (11)

Then, by Lemmas 2.4 and 2.2, we have the following result.

Lemma 4.1. The correlated Gaussian mechanism that injects 𝛾𝑖
into 𝑓𝑖 (1 ≤ 𝑖 ≤ 𝑙) ensures (𝜖, 𝛿)-DP, if and only if

𝑆 (Ξ) ≤
√
2

(√
𝜒2 + 𝜖 − 𝜒

)
, (12)

where 𝜒 is the solution to

erfc (𝜒) − exp(𝜖) · erfc
(√

𝜒2 + 𝜖
)
= 2𝛿,

and erfc() denotes the complementary error function.

Proof. Suppose that we inject i.i.d. Gaussian noiseN (0, I) into
Ξ = {b𝑖 } (by Eq. (11)) for differential privacy. Then, by Lemma 2.4,

we can ensure (𝜖, 𝛿)-DP in Ξ if Eq. (12) holds. Let b∗
𝑖
denote the

noisy version of b𝑖 thus obtained. We show that we can obtain all

𝑓 ∗
𝑖
(1 ≤ 𝑖 ≤ 𝑘) from Ξ∗ without incurring any more privacy loss.

Hence we can prove that CGM is (𝜖, 𝛿)-DP.
We obtain 𝑓 ∗

1
from b∗

1
directly. For every 𝑖 ≥ 2, we obtain 𝑓 ∗

𝑖

from b∗
𝑖
and

∑𝑖−1
𝑗=1

(
𝛼𝑖 𝑗 · 𝑓 ∗𝑗

)
, namely:

𝑓 ∗𝑖 = 𝜎𝑖b
∗
𝑖 +

𝑖−1∑
𝑗=1

(
𝛼𝑖 𝑗 · 𝑓 ∗𝑗

)
. (13)

Since DP is preserved under post-processing (Lemma 2.2), reusing

the noisy

∑𝑖−1
𝑗=1

(
𝛼𝑖 𝑗 · 𝑓 ∗𝑗

)
does not incur any privacy loss. By induc-

tion, all 𝑓 ∗
𝑖
can be obtained without incurring any more privacy loss

than releasing Ξ∗. Hence, CGM is (𝜖, 𝛿)-DP and the reconstruction

procedure is described as in (13). □

Intuitively, by Lemma 4.1, when the 𝐿2 sensitivity of each 𝑓𝑖 −∑𝑖−1
𝑗=1

(
𝛼𝑖 𝑗 · 𝑓𝑗

)
is small, CGM may achieve a significantly reduced

noise scale for perturbing each 𝑓𝑖 , while satisfying (𝜖, 𝛿)-LDP. This
is done by setting 𝜎𝑖 to a small value for each Gaussian variable

[𝑖 in Eq. (10), so that the total noise 𝛾𝑖 injected into 𝑓𝑖 is much

smaller than that required when we apply the analytic Gaussian

mechanism directly. Based on this idea, next we present a concrete

algorithm that applies CGM to our problem setting, i.e., streaming

data collection under LDP.

4.3 Applying CGM to Streaming Data
Collection

To instantiate CGM for the problem of releasing a data stream under

LDP, a simple way would be to apply Lemma 4.1 and generate the

noise to be injected to a particular data item (say, 𝑥𝑘,𝑖) such that

this noise is correlated with all the noise vectors injected into pre-

vious data items 𝑥𝑘,𝑗 (𝑗 < 𝑖) in the same stream. However, doing so

incurs a high computational cost that grows with increasing num-

ber of timestamps 𝑖 . Instead, we design an effective and low-cost

instantiation of CGM with constant (and negligible) computational

overhead, as follows.

Without loss of generality, we focus on a particular user 𝑘’s data

stream 𝑥𝑘 = (𝑥𝑘,1 . . . , 𝑥𝑘,𝑙). Recall from the setting in Section 3

that for every item 𝑥𝑘,𝑖 and 𝑥𝑘,𝑖−1 we have that ∥𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1∥ ≤ 𝐶 .

Meanwhile, in our problem setting, the function 𝐹 to be released is

the 𝑑 × 𝑑-dimensional identity function I. Hence, the exact 𝑥𝑘,𝑖 is
directly correlated with 𝑥𝑘,𝑖−1. To compute the noisy version 𝑥∗

𝑘,𝑖
of

𝑥𝑘,𝑖 , CGM generates a noise vector that is directly correlated with

the noise contained in the previous noisy update 𝑥∗
𝑘,𝑖−1. To do so,

the high level idea is to regard 𝑥𝑘,𝑖 as a linear combination of 𝑥𝑘,𝑖
(i.e., itself) and 𝑥𝑘,𝑖−1, and inject noise 𝛾𝑖 into 𝑥𝑘,𝑖 as in Eq. (9), with

parameters 𝛼𝑖 𝑗 (1 ≤ 𝑗 < 𝑖 − 1) fixed to 0. Hence, the noise injected

to 𝑥𝑘,𝑖 equals the sum of a fresh Gaussian noise [𝑖 and a portion

of the noise injected to 𝑥𝑘,𝑖−1. This drastically simplifies CGM,

since the generation of 𝛾𝑖 only relies on 𝛾𝑖−1, not 𝛾1, 𝛾2, . . . , 𝛾𝑖−2.
Consequently, we only need to keep track of the noise generated

for the previous estimate 𝑥∗
𝑘,𝑖−1 when 𝑥𝑘,𝑖 comes, rather than the

whole history of noisy data updates. This design minimizes the

computational cost of CGM. Further, this design also comes with

no loss of utility compared to the general form in Eq. (10) that

reuses the noise at all previous timestamps. A detailed proof can

be found in Appendix A.1 in the technical report version [4].

Algorithm 3: CGM for streaming data

Input: data items {𝑥𝑘,𝑖 }𝑙𝑖=1, where ∥𝑥𝑘,𝑖 ∥ ≤
1

2
and

∥𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1∥ ≤ 𝐶 , privacy parameters 𝜖, 𝛿 .

Output: private estimates {𝑥∗
𝑘,𝑖
}𝑙
𝑖=1

.

1 for 𝑖 = 1 to 𝑙 do
2 if 𝑖 = 1 then
3 𝑥∗

𝑘,𝑖
←− 𝑥𝑘,𝑖 + N(0, 𝜎21 · I), where 𝜎1 is computed as

in Eq. (14).

4 𝑣1 ←− 1.

5 else
6 𝑟𝑖 ←− 1−2𝐶

(1−2𝐶)2+𝑣𝑖−1 .

7 𝜎𝑖 ←− ((1 − 𝑟𝑖) + 𝑟𝑖 · 2𝐶) · 𝜎1.
8 𝑥∗

𝑘,𝑖
←− 𝑥𝑘,𝑖 + N(0, 𝜎2𝑖 · I) + 𝑟𝑖 · 𝛾𝑘,𝑖−1, where 𝛾𝑘,𝑖−1

is the noise injected in 𝑥∗
𝑘,𝑖−1.

9 𝑣𝑖 ←− 𝑣𝑖−1
(1−2𝐶)2+𝑣𝑖−1 .

10 Output 𝑥∗
𝑘,𝑖

Algorithm 3 outlines our proposed method for collecting a data

stream with (𝜖, 𝛿)-LDP. For simplicity, Algorithm 3 focuses on the

data stream possessed by one individual 𝑘 . At the 𝑖-th time step,

the algorithm the exact data item 𝑥𝑘,𝑖 , and outputs a noisy version

𝑥∗
𝑘,𝑖

by injecting correlated noise (Lines 3 and 8).

When 𝑖 = 1, the algorithm injects a freshly generated noise into

𝑥𝑘,𝑖 (Line 3), similarly as in Algorithm 1. Specifically, the noise is

sampled from N(0, 𝜎2
1
· I), where 𝜎1 satisfies:

√
𝑙

𝜎1
≤
√
2

(√
𝜒2 + 𝜖 − 𝜒

)
, (14)

and 𝜒 is defined in Eq. (3).

When 𝑖 ≥ 2, our algorithm samples random noise for 𝑥𝑘,𝑖 that is

correlated with the noise contained in 𝑥∗
𝑘,𝑖−1 (Line 8). In particular,

the noise injected to 𝑥𝑘,𝑖 is the sum of a fresh noise fromN(0, 𝜎2
𝑖
· I)

and 𝑟𝑖 times the noise injected to 𝑥𝑘,𝑖−1, denoted as 𝑟𝑖 · 𝛾𝑖−1. To
compute 𝜎𝑖 and 𝑟𝑖 , we introduce another parameter 𝑣𝑖 (Lines 4 and

9): 𝑣1 is initialized to be 1 at timestamp 1 (Line 4) and 𝑣𝑖 is updated at

every timestamp (Line 9). 𝑣𝑖 denotes the ratio between the variance

of the overall noise injected to 𝑥𝑘,𝑖 and that injected to 𝑥𝑘,1. Finally,

the algorithm releases 𝑥∗
𝑘,𝑖

(Line 10).

It remains to clarify the computation of 𝑟𝑖 (Line 6) and 𝜎𝑖 (Line

7), whose values are carefully chosen to minimize the overall error

of CGM. The formulae for 𝑟𝑖 and 𝜎𝑖 are the results of a careful

theoretical analysis on the privacy-utility tradeoff of Algorithm 3,

presented in the next section. In particular, the value of 𝜎𝑖 is given

in Lemma 5.3, and the choice of 𝑟𝑖 is clarified towards the end of

Section 5.2.

Space and time complexity. Algorithm 3 incurs𝑂 (1) extra space
and 𝑂 (𝑙) time for the entire stream, which is clearly optimal, as

reporting the data updates itself requires the same costs. In partic-

ular, at each timestamp 𝑖 , the algorithm only needs to store and

update three additional variables 𝑟𝑖 , 𝑣𝑖 and 𝛾𝑘,𝑖 (Lines 4 and 9, 6 and

8). The updating of these variables takes constant time. Overall, the

computational overhead of Algorithm 3 is negligible; hence, it is

suitable for a mobile platform such as iOS and Android.

CGMfor data streamswith unknown length. In the case when
𝑙 , the length of the input data stream, is not known in advance or is

unbounded, one can choose to fix the value of 𝜎1 first and account

for the incurred privacy cost at every timestamp using Lemma 5.3.

The algorithm is terminated when the privacy cost exceeds the pre-

defined privacy budget, or when the input data stream terminates.

5 THEORETICAL ANALYSIS
In this section, we analyze the privacy-utility trade-off of Algo-

rithm 3.

5.1 Main Result
We first present our main theorem, which states the privacy-utility

trade-off of Algorithm 3 in terms of the expected squared error for

each 𝑥𝑖 .

Theorem 5.1. Algorithm 3 produces estimates {𝑥∗
𝑘,𝑖
}𝑙
𝑖=1

under
(𝜖, 𝛿)-LDP, with error guarantee for each data item:

E
[
∥𝑥∗

𝑘,𝑖
− 𝑥𝑘,𝑖 ∥2

]
=

4𝐶 − 4𝐶2

1 − (1 − 2𝐶)2𝑖
𝜎2𝑑, (15)

where 𝑑 is the dimensionality for each element 𝑥𝑘,𝑖 , 𝑙 is the length of
the data stream, 𝜎 is defined in Eq. (7). The expectation is taken over
the randomness of the Algorithm.

The proof of the above theorem is rather complicated, and we

defer it in the next subsection. Note that the 𝜎 in Theorem 5.1 is

the same as the 𝜎 in Algorithm 1. Meanwhile, the term
4𝐶−4𝐶2

1−(1−2𝐶)2𝑖
quickly converges to (4𝐶 − 4𝐶2) as the number of timestamps 𝑖

increases. When 𝐶 < 1

2
, this factor is strictly smaller than 1, giving

CGM an advantage over the baseline approach in terms of utility.

In addition, when 𝐶 ≪ 1, 𝐶2
becomes negligible, and the error of

CGM is approximately 4𝐶 times that of Algorithm 1.

Based on Theorem 5.1, the following corollary formally states

the overall error of CGM with respect to the whole data stream.

Corollary 5.2. Algorithm 3 produces estimates {𝑥∗
𝑘,𝑖
}𝑙
𝑖=1

under
(𝜖, 𝛿)-LDP, with expected error:

1

𝑙

(
𝑙∑

𝑖=1

E
[
∥𝑥∗

𝑘,𝑖
− 𝑥𝑘,𝑖 ∥2

])
= (4𝐶 − 4𝐶2)𝜎2𝑑 (1 + 𝑜 (1)), (16)

where 𝜎 is defined in Eq. (7) as in Theorem 5.1, and the expectation is
taken over the randomness of the Algorithm.

Proof. It suffices to compute

∑𝑙
𝑖=1

1

1−(1−2𝐶)2𝑖 . We denote (1 −
2𝐶)2 as 𝑞. Then, for some 𝑖0, we have:

𝑙∑
𝑖=1

1

1 − (1 − 2𝐶)2𝑖
=

𝑖0∑
𝑖=1

1

1 − 𝑞𝑖
+

𝑙∑
𝑖=𝑖0

1

1 − 𝑞𝑖

≤
𝑖0∑
𝑖=1

1

1 − 𝑞𝑖
+

𝑙∑
𝑖=𝑖0

(1 + 1

𝑖
)

= 𝑙 +𝑂 (log 𝑙)
□

5.2 Proof of Theorem 5.1
In what follows, we prove Theorem 5.1. Without loss of generality,

we let 𝑑 = 1 and one may substitute any value of 𝑑 into Theorem 5.1.

Proof of the privacy guarantee. To set up the stage for privacy

analysis, observe that 𝑥𝑘,𝑖 (𝑖 ≥ 2) can be expressed as the sum of

two terms, as follows.

𝑥𝑘,𝑖 = 𝑥𝑘,𝑖 − 𝑟𝑖 · 𝑥𝑘,𝑖−1 + 𝑟𝑖 · 𝑥𝑘,𝑖−1
= (1 − 𝑟𝑖) · 𝑥𝑘,𝑖 + (𝑟𝑖 · 𝑥𝑘,𝑖 − 𝑟𝑖 · 𝑥𝑘,𝑖−1) + 𝑟𝑖 · 𝑥𝑘,𝑖−1
= (1 − 𝑟𝑖) · 𝑥𝑘,𝑖 + 𝑟𝑖 ·

(
𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1

)︸ ︷︷ ︸
first term

+ 𝑟𝑖 · 𝑥𝑘,𝑖−1︸ ︷︷ ︸
second term

. (17)

The way that Algorithm 3 injects noise into 𝑥𝑘,𝑖 (Line 6 in Algo-

rithm 3) is equivalent to applying a perturbation on each term in

Eq. (17) separately. In particular, the first term is perturbed with a

fresh Gaussian noise N(0, 𝜎2
𝑖
), while the second term is replaced

by 𝑟𝑖 · 𝑥∗𝑘,𝑖−1, where 𝑥
∗
𝑘,𝑖−1 = 𝑥𝑘,𝑖−1 + 𝛾𝑖−1 is the noisy estimate for

𝑥𝑘,𝑖−1. By the post-processing property of DP (Lemma 2.2), using

𝑟𝑖 · 𝑥∗𝑘,𝑖−1 in the 𝑖-th time-step does not incur any privacy cost.

Therefore, to analyze the privacy cost of releasing 𝑥∗
𝑘,𝑖
, we only

need to quantify the privacy cost of injectingN(0, 𝜎2
𝑖
) into the first

term:

𝑟𝑖 ·
(
𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1

)
+ (1 − 𝑟𝑖) · 𝑥𝑘,𝑖 (18)

Accordingly, we let 𝑉𝑖 be the sensitivity of the first term, i.e.,

𝑉𝑖 =

{
1, if 𝑖 = 1 (19a)

1 − 𝑟𝑖 + 𝑟𝑖 · 2𝐶, otherwise (19b)

where 𝐶 is the differential bound, i.e., ∥𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1∥ ≤ 𝐶 . When

𝑖 ≥ 2, the sensitivity of the first term follows from the triangle

inequality: 𝑥𝑘,𝑖 is of sensitivity 1 and the differential (𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1)
is of sensitivity 2𝐶 . Clearly, the whole vector of concatenating all{

1

𝑉𝑖
·
(
𝑟𝑖 ·

(
𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1

)
+ (1 − 𝑟𝑖) · 𝑥𝑘,𝑖

)}𝑙
𝑖=1

is of sensitivity

√
𝑙 . Combining Lemma 2.4 and Lemma 2.2, we reach

the following lemma.

Lemma 5.3. The generation of {𝑥∗
𝑘,𝑖
}𝑙
𝑖=1

in Algorithm 3 satisfies
(𝜖, 𝛿)-LDP, for 𝜎𝑖 such that,

𝑉𝑖
√
𝑙

𝜎𝑖
≤
√
2

(√
𝜒2 + 𝜖 − 𝜒

)
, (20)

and 𝜒 is defined in Eq. (3).

At the 𝑖-th timestamp, the noisy estimate for 𝑥𝑘,𝑖 can be obtained

by adding the noisy estimate for the first term in Eq. (18), i.e.,

𝑟𝑖 ·
(
𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1

)
+ (1 − 𝑟𝑖) · 𝑥𝑘,𝑖 ,

which is perturbed in this timestamp, and the noisy estimate for

the second term, i.e., 𝑟𝑖 ·𝑥𝑘,𝑖−1, which is retrieved from the previous

timestamp with no additional privacy cost.

Choice of parameters 𝑟𝑖 and 𝑉𝑖 . Next, we clarify the values of

𝑟𝑖 and 𝑉𝑖 in Eq. (19b). Recall that the variance in the fresh noise

injected to 𝑥∗
𝑘,𝑖

is 𝜎2
𝑖
, where 𝜎𝑖 is computed according to Eq. (20). We

denote var[𝑥∗
𝑘,𝑖
] as the variance in 𝑥∗

𝑘,𝑖
. Note that var[𝑥∗

𝑘,𝑖
] is the

sum of the variance from the fresh noise 𝛾𝑖 and that of the reused

noise in 𝑥∗
𝑘,𝑖−1. By Eq. (20), we have the following expression for

the variance of 𝑥∗
𝑘,𝑖
:

var

[
𝑥∗
𝑘,𝑖

]
= 𝜎2𝑖 + 𝑟

2

𝑖 · var
[
𝑥∗
𝑘,𝑖−1

]
= (𝑟𝑖 · 2𝐶 + 1 − 𝑟𝑖)2 · 𝜎21 + 𝑟

2

𝑖 · var
[
𝑥∗
𝑘,𝑖−1

]
Hence, to minimize var[𝑥∗

𝑘,𝑖
], we just need to find the optimal 𝑟𝑖

that minimizes the above quadratic function of 𝑟𝑖 when 0 < 𝐶 < 1

2
.

In particular, we know that var[𝑥∗
𝑘,1
] = 𝜎2

1
, where 𝜎2

1
is computed

from Eq. (20) with 𝑉1 = 1. From this we can compute 𝑟2 and 𝑉2,

which is then plugged into Eq. (20) for 𝑖 = 2, which, in turn, is used

to determine 𝑟3, and so on. A little algebra gives us the general

expressions for the optimal 𝑟𝑖 and the corresponding var

[
𝑥∗
𝑘,𝑖

]
:

𝑟𝑖 =
1 − 2𝐶

(1 − 2𝐶)2 + 4𝐶−4𝐶2

1−(1−2𝐶)2𝑖−2
, (21)

and

var

[
𝑥∗
𝑘,𝑖

]
=

4𝐶 − 4𝐶2

1 − (1 − 2𝐶)2𝑖
· 𝜎2

1
. (22)

Note that the closed form expression of 𝑟𝑖 is in line with the

(recursive) computation expression 𝑟𝑖 in Line 6 of Algorithm 3 and

we omit the details here. Next, based on 𝑟𝑖 , we can compute 𝑉𝑖 ,

which is used to determine 𝜎𝑖 according to Eq. (20). In addition, the

distribution of 𝑥∗
𝑘,𝑖

is a Gaussian distribution, expressed as

N(𝑥𝑘,𝑖 ,
4𝐶 − 4𝐶2

1 − (1 − 2𝐶)2𝑖
· 𝜎2

1
),

since the summation of two independent Gaussian noises is still a

Gaussian noise. The expected squared error for 𝑥𝑘,𝑖 is
4𝐶−4𝐶2

1−(1−2𝐶)2𝑖 ·𝜎
2

1
,

which is in line with Eq. (22). Finally, we plug the values of 𝑉𝑖 and

𝜎𝑖 into Lemma 5.3, and Theorem 5.1 follows.

Remark. CGM can also be applied to other differential privacy def-

initions such as Rényi differential privacy (RDP) [33] and zCDP [10],

without changes in the algorithm. Here we provide the high level

idea; a formal proof sketch can be found in Appendix A.5 of the tech-

nical report version [4]. According to [33], under Rényi differential

privacy, injecting Gaussian noise to the original data, with a noise

scale linear to the sensitivity of the function of interest, satisfies

RDP. Hence, the above privacy analysis of CGM (based on the ana-

lytic Gaussian mechanism) can be adapted to RDP as well. Further,

under RDP, with the reuse ratio of 𝑟𝑖 , the scale of the fresh noise

injected at each timestamp is still calibrated to (𝑥𝑘,𝑖 − 𝑟𝑖 · 𝑥𝑘,𝑖−1).
Thus, the optimal reuse ratio for CGM under RDP is exactly cal-

culated as in Eq. (21). Finally, the improvement of CGM over the

baseline solution is independent of the privacy framework, as long

as the linear relationship between the scale of the noise and the

sensitivity of the function of interest holds.

6 EXPERIMENTS
We compare the utility performance of CGM (Algorithm 3) against

the baseline solution Algorithm 1 using the following two real

datasets.

• Kaggle Web Traffic Time Series [28]: The training dataset of this

Kaggle competition consists of approximately 145k time series.

Each of these time series contains the daily views of a Wikipedia

article, during the time span from July 1st, 2015 to December

31st, 2016 (550 days).

• Beijing taxi GPS trajectories [31]: This classic time series dataset

is collected from approximately 5k taxi drivers in Beijing. Each of

these time series contains the GPS pings of a taxi driver in Beijing

in May 2009. Each GPS ping includes the taxi ID, timestamp,

latitude and longitude, as well as other information such as

occupancy indicator, vehicle orientation, and speed.

In the following, Sections 6.1 and 6.2 present the experimental

designs as well as evaluation results on the Kaggle Web Traffic and

Beijing Taxi datasets, respectively. Section 6.3 investigates the effect

of various values of the differential bound 𝐶 on the performance of

CGM.

6.1 Evaluations on Kaggle Web Traffic Dataset
Experiment design. In this set of experiments, we consider each

Wikipedia page 𝑘 as an individual, and its daily page view counts

𝑥𝑘,1, . . . , 𝑥𝑘,𝑙 as the private streaming data, where 𝑙 = 550 is the

number of timestamps. This setting corresponds to several real-

world applications of LDP-compliant data collection. For instance,

a data aggregator, such as a web traffic analytics service, may ask a

large group of web site owners for their daily visit statistics, which

might be considered as private information to the web site owner.

Meanwhile, another related application (mentioned in Section 1)

concerns the collection of web browser users’ number of visits to

a particular website (or a category of such websites) each day. In

a broader sense, any app that collects private daily statistics (e.g.,
app usage, energy consumption, number of crashes, etc.) is related
to this setting.

The original data from Kaggle are highly skewed, in the sense

that a small number of Wikipedia pages receive huge numbers of

visits per day, where as the number of daily visits of other pages are

far lower. Consequently, those outlier pages would cause extremely

high sensitivity, leading to very noisy daily visit count estimates for

other pages under LDP. To avoid this issue, in a preprocessing step,

we filter out all pages with over 20000 views in any of the 550 days

(85k pages remain after the filtering). Accordingly, the sensitivity

of each item of each data stream is 20000.

Recall from Section 1 that the proposed method CGM is based

on the observation that a publicly known constant 𝐶 exists that

bounds the value differentials between consecutive timestamps in

a data stream. In the context of the Kaggle Web Traffic dataset, 𝐶

bounds the maximum difference between number of views in two

adjacent days. To ensure this property, when using CGM, each user

𝑘 performs the following preprocessing step to clip her streaming

data starting from the second timestamp, i.e., 𝑥𝑘,2, . . . , 𝑥𝑘,550, as

follows.

𝑥 ′
𝑘,𝑖

=

𝑥𝑘,𝑖−1 +𝐶, if 𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1 > 𝐶 , (23a)

𝑥𝑘,𝑖−1 −𝐶, if 𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1 < −𝐶 , (23b)

𝑥𝑘,𝑖 otherwise. (23c)

After that, the user procceds to inject random noise to the clipped

values using CGM. Note that the original, unclipped data value

𝑥𝑘,𝑖 is considered the ground truth, and the clipping based on 𝐶

is considered a part of the algorithm for enforcing LDP. In other

words, the bias introduced in the clipping step is included in the

overall error of CGM. We emphasize that this clipping step only

applies to CGM, not to the naive solution (Algorithm 1) that directly

releases each 𝑥𝑘,𝑖 using the analytic Gaussian mechanism.

Regarding privacy parameters, in this set of experiments we

follow the periodically refreshing scheme described in Section 3,

which is commonly used in practice. In particular, the user allocates

a privacy budget 𝜖 for each day, alongside a failure parameter

𝛿 . In our experiments, 𝛿 is fixed to a small value 10
−5
; 𝜖 varies

and can be either 0.25, 0.5, 1.0, or 2.0 per day. Note that when

accumulated over a long period, e.g., 550 days in this dataset, the

equivalent overall privacy budget under the Gaussian mechanism

increases proportionally the square root of number of timestamps,

i.e.,
√
550 ≈ 23.45. Whether such a high accumulated privacy budget

leads to large privacy leakage is out of the scope of this work, and

we refer the reader to the discussion in a recent paper [7].

We compare the utility performance of CGM (Algorithm 3) and

the navie solution (Algorithm 1) on the processed dataset in terms

of the average mean squared error under the same level of privacy

guarantee at each time stamp. The result is averaged over 1000

independent experiments. The mean squared error (MSE) for the

𝑖-th timestamp (day) is defined as:

1

𝑛

𝑛∑
𝑘=1

|𝑥∗
𝑘,𝑖
− 𝑥𝑘,𝑖 |2, (24)

where 1 = 1, 2, . . . , 550.

Evaluation results. Figure 1 plots the utility of CGM (Algorithm 3)

and that of the baseline solution (Algorithm 1) as a function of time,

with varying values of the daily privacy budget 𝜖 . For CGM, we

fix the differential bound to 𝐶 = 500; considering that each page

can be viewed up to 20,000 times in our setting, this means that

the number of page visit can move in either direction for up to

2.5% per day. The choice of 𝐶 depends on public knowledge in the

application domain, and we evaluate the impact of various values

of 𝐶 on the utility of CGM in Section 6.3.

As demonstrated in Figure 1, CGM consistently outperforms the

baseline solution by a wide margin, for all settings of 𝜖 . The per-

formance gap between CGM and baseline expands as the amount

of daily privacy budget 𝜖 decreases, i.e., the stronger the privacy
requirement, the more pronounced the advantage of CGM becomes.

This is because CGM introduces two types of error: bias due to

clipping with the differential bound 𝐶 , and variance due to the in-

jected noise, whereas the baseline solution outputs unbiased value

updates, albeit with a far larger noise variance. With a small 𝜖 ,

the noise variance dominates the overall error, leading to a wider

performance gap between CGM and baseline. Note that even for a

large privacy budget 𝜖 = 2, which is the value used in some func-

tionalities of iOS [2], CGM still significantly outperforms baseline.

This demonstrates that CGM has clear benefit in terms of result

utility in practical settings.

In particular, on day 1, the utility of CGM is identical to that

of the baseline method, since the noise injected to the first data

update is the same in both methods. Starting from day 2, the error

of CGM drops rapidly, until reaching a relatively stable level after

a few days. This is because in CGM, the variance of the reported

noisy value at timestamp 𝑖 drops with increasing 𝑖 , according to

our theoretical analysis result in Eq. (22).

6.2 Evaluations on Beijing Taxi Dataset
Experiment design. In the second set of experiments, we consider

the situation where the data aggregator collects results of a contin-

uous range aggregate query with LDP, which asks each taxi driver

to report the amount of time she has stayed within a given spatial

range (e.g., a COVID-19 danger zone) since the last update; each taxi
driver submits an update every 30 minutes. Each reported value is

normalized to the range [0, 1], leading to a sensitivity of 1 for each

data update. In our experiments, we used the taxi trajectories in one

day (we could not simulate a longer timespan since the data con-

tains trajectories for different taxis on different days). Accordingly,

there are 𝑙 = 48 timestamps in total, corresponding to 24 hours

with one update every 30 minutes. We report the average result for

30 different days in the dataset; for each day, every experiment is

repeated 100 times, and the average results are reported.

Specifically, we normalize the latitude and longitude of all taxis

at all times to a unit square, i.e., [0, 1] × [0, 1]. The query range is a

rectangle of size [0.45, 0.55] × [0.45, 0.55], located at the center of

the spatial range. We have also tested other query ranges, which

led to similar results and the same conclusions on the relative

performance of CGM and baseline; hence, we only report the results

for one query range for brevity.

In the dataset, the GPS sampling rate varies for different taxis,

and the taxi’s location is unknown between two adjacent pings. In

order to estimate the duration of time each taxi stays with the query

range during every reporting period, we linearly interpolate the

GPS coordinates between every two consecutive pings. Finally, for

CGM, we enforce a differential bound 𝐶 similarly as in Section 6.1,

and compare the performance of CGM and the baseline method in

terms of the mean squared error, defined in Eq. (24).

Regarding the privacy parameters, in this set of experiments,

since all updates happen within one day, we assume that each user

assigns an overall privacy budget covering all updates (unlike the

previous set of experiments where the privacy budget is allocated

to each timestamp). Note that this privacy setting also agrees with

the current common practice of allocating a daily privacy budget.

Specifically, we vary 𝜖 in {0.25, 0.5, 1, 2} and fix 𝛿 to 10
−5
. Finally,

for CGM, we fix the differential bound to 𝐶 = 0.05.

Evaluation results. Figure 2 compares the utility performance of

CGM and the baseline approach under various privacy parameter

settings. Once again, CGM consistently and signficiantly outper-

forms baseline, in all settings except for the first update of a stream,

since CGM and baseline perform the same operations for the first

update. Similar to the case of Kaggle Web Traffic, the performance

gap between CGM and baseline is larger for smaller values of 𝜖 ,

which correspond to stronger privacy protection. The error of CGM

drops from the same level as baseline to its stable level within 20

updates.

Finally, we mention that for the setting with 𝜖 = 2 (the privacy

budget value used in iOS [2]), the stable MSE of CGM is around

0.006, corresponding to an RMSE of

√
0.006 = 0.077. Considering

that the original data value has a range of [0, 1], this level of error
might be acceptable in practice. In contrast, the MSE of the baseline

approach reaches as high as 0.028, corresponding to an RMSE of

0.167, which might be too high to be acceptable.

6.3 Effect of Differential Bound C
Next, we investigate the impact of the value of the differential

bound 𝐶 on the utility performance of CGM. Note that unlike in

the non-private setting, tuning hyperparameter 𝐶 with data is a

challenging problem under LDP, since (i) the tuning process itself

needs to be done with an LDP-compliant mechanism with a portion

of the privacy budget, and (ii) the sensitivity of 𝐶 , the impact of

𝐶 on result utility, and the appropriate privacy parameters for the

tuning process are all difficult math problems. This is an orthogonal

topic, and we refer the reader to several recent works [26, 32] for

generic hyperparameter tuning solutions. The purpose of this set of

experiments is to provide a guideline to LDP practitioners for how

to choose an appropriate 𝐶 given the public domain knowledge of

the application, without tuning 𝐶 with data.

Figures 3 shows the utility performance of CGM with varying

𝐶 ∈ {200, 500, 1000} on the Kaggle Web Traffic dataset. Observe

that with a small privacy budget, e.g., 𝜖 = 0.25, a smaller 𝐶 leads

to lower error. On the other hand, with a relatively large privacy

budget 𝜖 = 2, overly small values of 𝐶 lead to large error fluc-

tuations, whereas CGM with a larger 𝐶 demonstrate more stable

performance over time. To understand this behavior, note that the

error of CGM includes two components: the bias introduced by

clipping, and the variance due to the injected random noise nec-

essary to satisfy LDP. The former occurs when the value of 𝐶 is

too low, and, consequently, the differential bound assumption over

the aggregate stream, described in Section 3.1, no longer holds.

The latter is given by Eq. (15). When 𝜖 is low, the noise variance

dominates overall error; hence, a smaller 𝐶 leads to reduced noise

scale, and, thus, lower overall error. However, a smaller 𝐶 , while

reducing noise scale, also brings in higher clipping bias. As 𝜖 grows,

the noise scale drops, and the effect of the clipping bias becomes

more pronounced, which starts to favor larger values of 𝐶 .

Figure 4 repeats the same experiments on the Beijing Taxi dataset,

with varying 𝐶 ∈ {0.01, 0.05, 0.1}. Unlike the case of Kaggle Web

Traffic, the lowest value 𝐶 = 0.01 is consistently the best choice

according to the evaluation results. This is probably due to the fact

that the level of value fluctuation in the Beijing Taxi dataset is lower

than that in Kaggle Web Traffic, leading to generally lower clipping

bias in the former case. In addition, in Appendix A.2 of the technical

report version [4], we provide experimental results comparing the

empirical and theoretical performance (given by Eq. (15)) of CGM.

Summing up the evaluation results with varying 𝐶 on both

datasets, an appropriate choice of 𝐶 depends on both the privacy

parameters and properties of the underlying data. In particular, for

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

·106

day

M
S
E

𝜖 =0.25

baseline

CGM

0 100 200 300 400 500

0

0.5

1

1.5

2

2.5
·105

day

M
S
E

𝜖 =0.5

baseline

CGM

0 100 200 300 400 500

0

2

4

6

8

·104

day

M
S
E

𝜖 =1

baseline

CGM

0 100 200 300 400 500

0

0.5

1

1.5

2

·104

day

M
S
E

𝜖 =2

baseline

CGM

Figure 1: Utility performances of CGM (Algorithm 3) and the baseline (Algorithm 1) on the Kaggle Web Traffic
dataset, with varying daily privacy budget 𝜖 ∈ {0.25, 0.5, 1, 2} and 𝛿 = 10

−5. For CGM, the differential bound is fixed
to 𝐶 = 500.

0 10 20 30 40

0

0.5

1

1.5

timestamp

M
S
E

𝜖 =0.25

baseline

CGM

0 10 20 30 40

0

0.1

0.2

0.3

0.4

timestamp

M
S
E

𝜖 =0.5

baseline

CGM

0 10 20 30 40

0

2 · 10−2
4 · 10−2
6 · 10−2
8 · 10−2

0.1

0.12

timestamp

M
S
E

𝜖 =1

baseline

CGM

0 10 20 30 40

0

1

2

3

·10−2

timestamp

M
S
E

𝜖 =2

baseline

CGM

Figure 2: Utility performances of CGM (Algorithm 3) and the baseline (Algorithm 1) on the Beijing Taxi dataset,
with varying total privacy budget for all updates 𝜖 ∈ {0.25, 0.5, 1, 2} and 𝛿 = 10

−5. For CGM, the differential bound
is fixed to 𝐶 = 0.05. The whole space is normalized to [0, 1] × [0, 1], and the query region is [0.45, 0.55] × [0.45, 0.55].

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

·106

day

M
S
E

𝜖 =0.25

𝐶 = 200

𝐶 = 500

𝐶 = 1000

baseline

0 100 200 300 400 500

0

0.5

1

1.5

2

2.5
·105

day

M
S
E

𝜖 =0.5

𝐶 = 200

𝐶 = 500

𝐶 = 1000

baseline

0 100 200 300 400 500

0

2

4

6

8

·104

day

M
S
E

𝜖 =1

𝐶 = 200

𝐶 = 500

𝐶 = 1000

baseline

0 100 200 300 400 500

0

0.5

1

1.5

2

·104

day

M
S
E

𝜖 =2

𝐶 = 200

𝐶 = 500

𝐶 = 1000

baseline

Figure 3: Impact of varying differential bound𝐶 ∈ {200, 500, 1000} on the utility performance of CGMon the Kaggle
Web Traffic dataset, where 𝜖 ∈ {0.25, 0.5, 1, 2} and 𝛿 = 10

−5.

0 10 20 30 40

0

0.5

1

1.5

timestamp

M
S
E

𝜖 =0.25

𝐶 = 0.01
𝐶 = 0.05
𝐶 = 0.1
baseline

0 10 20 30 40

0

0.1

0.2

0.3

0.4

timestamp

M
S
E

𝜖 =0.5

𝐶 = 0.01
𝐶 = 0.05
𝐶 = 0.1
baseline

0 10 20 30 40

0

2 · 10−2
4 · 10−2
6 · 10−2
8 · 10−2

0.1

0.12

timestamp

M
S
E

𝜖 =1

𝐶 = 0.01
𝐶 = 0.05
𝐶 = 0.1
baseline

0 10 20 30 40

0

1

2

3

·10−2

timestamp

M
S
E

𝜖 =2

𝐶 = 0.01
𝐶 = 0.05
𝐶 = 0.1
baseline

Figure 4: Impact of varying differential bound𝐶 ∈ {0.01, 0.05, 0.1} on the utility performance of CGMon the Beijing
Taxi dataset, where 𝜖 ∈ {0.25, 0.5, 1, 2} and 𝛿 = 10

−5. The query region is [0.45, 0.55] × [0.45, 0.55].

relatively smooth streaming time series and/or a relatively low pri-

vacy budget, we can aggressively set a small value for𝐶 ; conversely,

a larger 𝐶 might be preferred when the data exhibit a high level

of fluctuations, and/or when 𝜖 is larger. Finally, we mention that

for all choices of 𝐶 , CGM consistently outperforms the baseline

method, whose error is far higher.

7 RELATEDWORK
The observation that data items in neighboring timestamps are

correlated is also exploited in private temporal data analysis [11,

39], although their formalization of correlations is different from

ours. Specifically, [11, 39] consider a temporal data streams from a

discrete space, whereas we consider temporal data streams from a

continuous space. Following the discrete setting, they model the

correlation between an the locations of an item at neighboring time

stamps with a transition matrix. For example, given the publicly

known transition matrix 𝑀 , an item currently at location 𝑥 has

probability𝑀𝑥,𝑦 of being at location 𝑦 in the next timestamp. Their

model of correlation can be applied to analyzing road networks

and users’ behavioral patterns, which are radically different from

our target applications where each user continuously updates a

numeric value. Hence, Ref. [11, 39] are orthogonal to this work.

Private streaming data analysis was first proposed by Dwork

et al. [18]. Our setting differs from [18] in the following ways, al-

though we both consider a data stream as the sensitive information.

First, [18] considers element-level differential privacy. To be more

specific, their mechanism outputs similar distributions for any two

neighboring data streams, where two data streams are called neigh-

bors if they differ by one element (up to many times of occurrences).

Instead, we consider the local differential privacy setting, and our

mechanism outputs similar distributions for any two data streams,

as long as they are from the same data domain. Second and more

importantly, [18] does not exploit the correlation between two ad-

jacent data items in a stream, while this observation is the key for

the proposed method CGM to achieve high utility in this work.

PeGaSus [13, 25], which considers the event-level privacy, is

not directly comparable to this work, which considers the user-

level privacy. Despite this major difference, both CGM and Pegasus

aim to reduce the overall variance in the released statistics. While

Pegasus groups similar data items and applies a smoothing post-

processing step, CGM enforces such a condition so that it can inject

correlated noises to adjacent data items. A combination of these

techniques is a promising direction for future work.

FAST [22, 23] addresses a similar problem as ours, and reduces

the amount of injected noise to satisfy differential privacy by sam-

pling the data stream along the time dimension. In particular, FAST

only perturbs and returns data items of the sampled timestamps;

data at other timestamps are discarded and instead derived from

the sample ones. This technique is orthogonal to CGM, and can be

used in combination of CGM, i.e., by perturbing the data items at

sampled timestamps with CGM. In Appendix A.3 of the technical

report version [4], we experimentally demonstrate that FAST+CGM

obtains higher result utility than using FAST alone.

Estimating static sample statistics under the local differential

privacy framework is a hot topic in the literature (e.g., [5, 9, 12, 14,

29, 35, 37, 40, 41]). In this paper, we study the problem of estimating

changing statistics over time; to be more specific, the sensitive data

of every individual is a continuous stream of data items. This setting

is very different from the existing works mentioned above; as a

result, our proposed method CGM is not directly comprable with

these existing solutions.

Analyzing evolving data with privacy guarantee is a relatively

new topic in private data analysis, e.g., [15, 27]. In particular, the

solution in [15] does not provide a formal differential privacy guar-

antee. [27] assumes that the input data of participants are sampled

frommultiple changing Bernoulli distributions, and the goal is to es-

timate the average of mean of the changing Bernoulli distributions

once every few time steps. Our work is not comparable with [27],

since instead of considering an underlying distribution for the input

sensitive data, we assume that the data stream is from a bounded

data domain, which is the canonical assumption in private data

analysis. In short, the input data changes over time in our setting,

whereas the underlying distribution changes over time in [27].

In our problem setting, we regard the analytic Gaussian mech-

anism [3], an improvement over the original Gaussian mecha-

nism [19], as a standard solution for achieving (𝜖, 𝛿)-local differen-
tial privacy. Since the Gaussian noise is used as a building block

in many (𝜖, 𝛿)-differentially private applications (e.g., [1, 6, 8, 24,
34, 36, 38]), we consider its most recent version [3] as the baseline

solution to our problem.

8 CONCLUSION
In this work, we study the problem of streaming data collection

under local differential privacy, which each individual possesses a

stream of data items, and aim to release her the data stream under

LDP. The naive approach requires each user to perturb the data

item independently at each timestamp, which leads to an exces-

sively large amount of noise. Addressing this issue, we exploit data

autocorrelations common in many real data streams, and propose a

novel mechanism CGM. CGM achieves rigorous accuracy and pri-

vacy guarantees with negligible computational overhead. Through

both theoretical analysis and extensive experimental evaluations

using real data from multiple application domains, we demonstrate

that CGM consistently and significantly outperforms the baseline

solution in terms of result utility.

Regarding future work, we plan to adapt CGM to more complex

analysis types, e.g., collecting heavy hitters and histograms. Another

promising direction is to extend the idea of CGM to the 𝜖-LDP

setting.

ACKNOWLEDGMENTS
This work was supported by the the Ministry of Education Singa-

pore (Number MOE2018-T2-2-091), Qatar National Research Fund

Qatar Foundation (Number NPRP10-0208-170408), and by the Na-

tional Research Foundation, Singapore under its Strategic Capability

Research Centres Funding Initiative. Any opinions, findings and

conclusions or recommendations expressed in this material are

those of the authors and do not reflect the views of the funding

agencies.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

CCS. 308–318.
[2] Apple. 2016. Differential Privacy Overview. Retrieved December 21, 2020 from

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

[3] Borja Balle and Yu-Xiang Wang. 2018. Improving the Gaussian Mechanism for

Differential Privacy: Analytical Calibration and Optimal Denoising. In ICML.
403–412.

[4] Ergute Bao, Yin Yang, Xiaokui Xiao, and Bolin Ding. 2021. CGM: An Enhanced
Mechanism for Streaming Data Collectionwith Local Differential Privacy (Tech-
nical report). Retrieved May 15, 2020 from https://drive.google.com/file/d/

164GVGSr2xz4x_xlbOhP1ciQW7axGAQKN/view?usp=sharing

[5] Raef Bassily and Adam Smith. 2015. Local, Private, Efficient Protocols for Succinct

Histograms. In STOC. 127–135.
[6] Raef Bassily, Adam Smith, and Abhradeep Thakurta. 2014. Private Empirical Risk

Minimization: Efficient Algorithms and Tight Error Bounds. In FOCS. 464–473.
[7] Abhishek Bhowmick, John C. Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan

Rogers. 2018. Protection Against Reconstruction and Its Applications in Private

Federated Learning. CoRR abs/1812.00984.

[8] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés, and Bernhard

Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In SOSP.
441–459.

[9] Mark Bun, Jelani Nelson, and Uri Stemmer. 2018. Heavy Hitters and the Structure

of Local Privacy. In PODS. 435–447.
[10] Mark Bun and Thomas Steinke. 2016. Concentrated Differential Privacy: Simpli-

fications, Extensions, and Lower Bounds. In TCC, Vol. 9985. 635–658.
[11] Y. Cao, M. Yoshikawa, Y. Xiao, and L. Xiong. 2017. Quantifying Differential

Privacy under Temporal Correlations. In ICDE. 821–832.
[12] Rui Chen, Haoran Li, A. Kai Qin, Shiva Prasad Kasiviswanathan, and Hongxia

Jin. 2016. Private spatial data aggregation in the local setting. In ICDE. 289–300.
[13] Yan Chen, Ashwin Machanavajjhala, Michael Hay, and Gerome Miklau. 2017.

PeGaSus: Data-Adaptive Differentially Private Stream Processing. In CCS.
1375–1388.

[14] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. 2018. Marginal Release

Under Local Differential Privacy. In SIGMOD. 131–146.
[15] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting Telemetry

Data Privately. In NeurIPS. 3574–3583.
[16] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. 2013. Local Pri-

vacy and Minimax Bounds: Sharp Rates for Probability Estimation. In NeurIPS.
1529–1537.

[17] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-

ing Noise to Sensitivity in Private Data Analysis. In TCC. 265–284.
[18] Cynthia Dwork, Moni Naor, Toniann Pitassi, Guy N. Rothblum, and Sergey

Yekhanin. 2010. Pan-Private Streaming Algorithms. In ICS. 66–80.
[19] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-

tial Privacy. In TCS, Vol. 9. 211–407. Issue 3-4.
[20] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In CCS. 1054–1067.

[21] Alexandre V. Evfimievski, Ramakrishnan Srikant, Rakesh Agrawal, and Johannes

Gehrke. 2002. Privacy preserving mining of association rules. In KDD. 217–228.
[22] Liyue Fan and Li Xiong. 2012. Real-Time Aggregate Monitoring with Differential

Privacy. In CIKM. 2169–2173.

[23] L. Fan and L. Xiong. 2014. An Adaptive Approach to Real-Time Aggregate

Monitoring With Differential Privacy. In TKDE, Vol. 26. 2094–2106.
[24] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,

Samee Zahur, and David Evans. 2017. Privacy-Preserving Distributed Linear

Regression on High-Dimensional Data. In PETS, Vol. 2017. 345–364.
[25] Sameera Ghayyur, Yan Chen, Roberto Yus, Ashwin Machanavajjhala, Michael

Hay, Gerome Miklau, and Sharad Mehrotra. 2018. IoT-Detective: Analyzing IoT

Data Under Differential Privacy. In SIGMOD. 1725–1728.
[26] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.

2010. Differentially Private Combinatorial Optimization. In SODA. 1106–1125.
[27] Matthew Joseph, Aaron Roth, Jonathan Ullman, and Bo Waggoner. 2018. Local

Differential Privacy for Evolving Data. In NeurIPS. 2375–2384.
[28] Kaggle. 2018. Web Traffic Time Series Forecasting. Retrieved December 21, 2020

from https://www.kaggle.com/c/web-traffic-time-series-forecasting/data

[29] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. 2014. Extremal Mechanisms

for Local Differential Privacy. In NeurIPS. 2879–2887.
[30] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith.

2008. What Can We Learn Privately?. In FOCS. 531–540.
[31] Jing Lian and Lin Zhang. 2018. One-Month Beijing Taxi GPS Trajectory Dataset

with Taxi IDs and Vehicle Status. In DATA. 3–4.
[32] Jingcheng Liu and Kunal Talwar. 2019. Private Selection from Private Candidates.

In STOC. New York, NY, USA, 298–309.

[33] Ilya Mironov. 2017. Rényi Differential Privacy. In CSF. 263–275.
[34] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Tal-

war, and Úlfar Erlingsson. 2018. Scalable Private Learning with PATE. In ICLR.
[35] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2016. Heavy

Hitter Estimation over Set-Valued Data with Local Differential Privacy. In CCS.
192–203.

[36] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally

Differentially Private Protocols for Frequency Estimation. In USENIX Security.
729–745.

[37] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui

Li, and Somesh Jha. 2019. Answering Multi-Dimensional Analytical Queries

under Local Differential Privacy. In SIGMOD. 159–176.
[38] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey F.

Naughton. 2017. Bolt-on Differential Privacy for Scalable Stochastic Gradient

Descent-based Analytics. In SIGMOD. 1307–1322.
[39] Yonghui Xiao and Li Xiong. 2015. Protecting Locations with Differential Privacy

under Temporal Correlations. In CCS. 1298–1309.
[40] Min Xu, Bolin Ding, Tianhao Wang, and Jingren Zhou. 2020. Collecting and

Analyzing Data Jointly from Multiple Services under Local Differential Privacy.

PVLDB 13, 11 (2020), 2760–2772.

[41] Min Xu, Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, and Zhicong

Huang. 2019. DPSAaS: Multi-Dimensional Data Sharing and Analytics as Services

under Local Differential Privacy. PVLDB 12, 12 (2019), 1862–1865.

[42] Jun Zhao, Teng Wang, Tao Bai, Kwok-Yan Lam, Xuebin Ren, Xinyu Yang, Shuyu

Shi, Yang Liu, and Han Yu. 2019. Reviewing and Improving the Gaussian Mecha-

nism for Differential Privacy. In CoRR, Vol. abs/1911.12060.

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://drive.google.com/file/d/164GVGSr2xz4x_xlbOhP1ciQW7axGAQKN/view?usp=sharing
https://drive.google.com/file/d/164GVGSr2xz4x_xlbOhP1ciQW7axGAQKN/view?usp=sharing
https://www.kaggle.com/c/web-traffic-time-series-forecasting/data

A APPENDIX
A.1 Utility Analysis of CGM
The general form of CGM, described in Section 4.2, reuses noises from all previous timestamps, whereas in a simplified version presented in

Section 4.3 (used in our implementation and the experiments), CGM only reuses the noise at last timestamp, which is clearly more efficient

than the general form. A natural question is: does this simplification leads to a degradation in result utility? In this appendix, we prove that

the simplified version in fact achieves the same utility as the general form of CGM.

For ease of presentation, we focus on the time series of a particular user, denoted as (𝑥1, . . . , 𝑥𝑙), where 𝑙 is the length of the sequence. In

what follows,we first describe the general correlated noise injection mechanism that utilizes all previous data items 𝑥𝑖−1, 𝑥𝑖−2, . . . , 𝑥1 when
releasing the noisy version of 𝑥𝑖 . Next, we briefly show that the optimal choice of reuse ratios for this general algorithm is actually the same

as CGM in Section 4.3, i.e., the optimal choice is only to utilize 𝑥𝑖−1 when releasing the noisy 𝑥𝑖 .

We first briefly introduce the general correlated noise injection mechanism that utilizes all previous data items 𝑥𝑖−1, 𝑥𝑖−2, . . . , 𝑥1 when
releasing noisy 𝑥𝑖 . Without loss of generality, we consider a data stream of scalars, where each item 𝑥𝑖 satisfies |𝑥𝑖 | ≤ 1

2
and |𝑥𝑖 − 𝑥𝑖−1 | ≤ 𝐶

for 𝑖 ≥ 2 with some constant 𝐶 < 1

2
. Recall that 𝑥𝑖 can be written as:

𝑥𝑖 = 𝑥𝑖 −
𝑖−1∑
𝑗=1

𝑟
(𝑗)
𝑖
· 𝑥 𝑗 +

𝑖−1∑
𝑗=1

𝑟
(𝑗)
𝑖
· 𝑥 𝑗

= (1 −
𝑖−1∑
𝑗=1

𝑟
(𝑗)
𝑖
) · 𝑥𝑖 +

𝑖−1∑
𝑗=1

𝑟
(𝑗)
𝑖
· (𝑥𝑖 − 𝑥 𝑗)︸ ︷︷ ︸

first term

+
𝑖−1∑
𝑗=1

𝑟
(𝑗)
𝑖
· 𝑥 𝑗︸ ︷︷ ︸

second term

,

where 𝑟
(𝑗)
𝑖

is the reuse ratio of the overall noise in noisy 𝑥 𝑗 when releasing noisy 𝑥𝑖 . Without loss of generality, we only consider the

case when all 0 ≤ 𝑟
(𝑗)
𝑖
≤ 1 (for 1 ≤ 𝑗 < 𝑖) and

∑𝑖−1
𝑗=1 𝑟

(𝑗)
𝑖
≤ 1. Note that for the sensitivity the first term, each (𝑥𝑖 − 𝑥 𝑗) contributes

𝑟
(𝑗)
𝑖
· (2(𝑗 − 𝑖) ·𝐶 − 1). Since we want this to be as small as possible, we shall only consider utilizing items 𝑥 𝑗 , where 𝑗 > 𝑖 − 1

2𝐶
. Without loss

of generality we let
1

2𝐶
be an integer. Hence, the above expression for 𝑥𝑖 can be re-written as:

𝑥𝑖 = (1 −
𝑖−1∑

𝑗=max(𝑖− 1

2𝐶
+1,1)

𝑟
(𝑗)
𝑖
) · 𝑥𝑖 +

𝑖−1∑
𝑗=max(𝑖− 1

2𝐶
+1,1)

𝑟
(𝑗)
𝑖
· (𝑥𝑖 − 𝑥 𝑗)

︸ ︷︷ ︸
first term

+
𝑖−1∑

𝑗=𝑖− 1

2𝐶

𝑟
(𝑗)
𝑖

𝑥 𝑗

︸ ︷︷ ︸
second term

. (25)

The general correlated noise injection mechanism reuses 𝑟
(𝑗)
𝑖

of the old noise injected to 𝑥 𝑗 , and injects a fresh noise of scale calibrated to

the sensitivity of the first term in Eq. (25) when releasing noisy 𝑥𝑖 . We denote the fresh noise first injected to noisy 𝑥𝑖 as 𝑍𝑖 , where all 𝑍𝑖 ’s

are independent. Then each noisy 𝑥𝑖 has 𝑖 − 1 independent sources of noises, namely, 𝑍1, . . . , 𝑍𝑖−1. Both the scale of the noise 𝑍𝑖 and the

coefficient of all the independent noises 𝑍1, . . . , 𝑍𝑖−1 in noisy 𝑥𝑖 are determined at the 𝑖-th timestamp, as we will explain shortly.

At the first timestamp, we release noisy 𝑥1. We denote a clean data item as 𝑥𝑖 and its released version as 𝑥∗
𝑖
. For the first timestamp, we

have that

𝑥∗
1
= 𝑥1 + 𝑍1 . (26)

where the scale of 𝑍1 is calibrated to the sensitivity of 𝑥1 and 𝑣𝑎𝑟 [𝑍1] is determined accordingly. Without loss of generality, we can set

𝑣𝑎𝑟 [𝑍1] to 1.

At the second timestamp, we see how correlated noise comes into play. Following Eq. (25), we have that

𝑥∗
2
= 𝑥2 + 𝑟 (1)

2
· 𝑍1 + 𝑍2 . (27)

The overall variance in 𝑥∗
2
can be expressed as:

𝑣𝑎𝑟 [𝑥∗
2
] = 𝑣𝑎𝑟 [𝑍2] + 𝑣𝑎𝑟 [𝑍1] ·

(
𝑟
(1)
2

)
2

,

where we put 𝑣𝑎𝑟 [𝑍1] in front of

(
𝑟
(1)
2

)
2

to emphasize that 𝑣𝑎𝑟 [𝑍1] is a constant while 𝑟
(1)
2

is to be determined. Since the scale of 𝑍2

is calibrated to the sensitivity of

(
(1 − 𝑟 (1)

2
) · 𝑥2 + 𝑟 (1)

2
· (𝑥2 − 𝑥1)

)
, i.e., (1 − 𝑟 (1)

2
) + 2𝐶 · 𝑟 (1)

2
and 𝑣𝑎𝑟 [𝑍1] = 1, we can write the explicit

expression for 𝑣𝑎𝑟 [𝑥∗
2
] as:

𝑣𝑎𝑟 [𝑥∗
2
] =

(
(1 − 𝑟 (1)

2
) + 2𝐶 · 𝑟 (1)

2

)
2

+ 1 ·
(
𝑟
(1)
2

)
2

. (28)

Following Eq. (28), the mechanism computes the optimal reuse ratio 𝑟
(1)
2

that minimizes Eq. (28). This problem can be seen as a quadratic

programming instance of one dimension:

min

𝑟
(1)
2

(
(1 − 2𝐶)2 + 1

)
· (𝑟 (1)

2
)2 − 2(1 − 2𝐶) · 𝑟 (1)

2

s.t. 0 ≤ 𝑟
(1)
2
≤ 1

(29)

Solving this problem gives us the optimal value for 𝑟
(1)
2

= 1−2𝐶
(1−2𝐶)2+1 and 𝑣𝑎𝑟 [𝑥∗

2
] = 4𝐶−4𝐶2

1−(1−2𝐶)4 , which are in line with Eq.(21) and Eq.(22) in

our original draft, respectively. In addition, the variance of the fresh noise 𝑍2 is 𝑣𝑎𝑟 [𝑍2] = 1

((1−2𝐶)2+1)2
. Bear in mind that 𝑍2 is independent

with 𝑍1.

At the third timestamp, the release of noisy 𝑥3 becomes tricky, since the noise in noisy 𝑥1 is correlated with those (recall that 𝑍2 and 𝑍1
are two independent noises) noises in noisy 𝑥2. We have that:

𝑥∗
3
= 𝑥3 + 𝑟 (2)

3
· (𝑟 (1)

2
· 𝑍1 + 𝑍2) + 𝑟 (1)

3
· 𝑍1 + 𝑍3, (30)

where we have abused the notation and use 𝑟
(1)
2

to denote the optimal reuse ratio computed from the second timestamp. In Eq. (30), 𝑟
(1)
2
· 𝑍1

and 𝑍2 are the noises injected to 𝑥∗
2
, 𝑍1 is the noise injected to 𝑥∗

1
, and finally, 𝑍3 is the fresh noise injected to 𝑥∗

3
. The overall variance in 𝑥∗

3

can be expressed as:

𝑣𝑎𝑟 [𝑥∗
3
] = 𝑣𝑎𝑟 [𝑍3] + 𝑣𝑎𝑟 [𝑍2] ·

(
𝑟
(2)
3

)
2

+ 𝑣𝑎𝑟 [𝑍1] ·
(
𝑟
(1)
2
· 𝑟 (2)

3
+ 𝑟 (1)

3

)
2

,

where we put 𝑣𝑎𝑟 [𝑍2] in front of

(
𝑟
(2)
3

)
2

, 𝑣𝑎𝑟 [𝑍1] in front of

(
𝑟
(1)
2
· 𝑟 (2)

3
+ 𝑟 (1)

3

)
2

and 𝑟
(1)
2

in front of 𝑟
(2)
3

to emphasize that 𝑣𝑎𝑟 [𝑍2], 𝑣𝑎𝑟 [𝑍1]

and 𝑟
(1)
2

are constant while 𝑟
(2)
3

and 𝑟
(1)
3

are to be determined. Note that we group the noises contributed by 𝑍1 in both 𝑥∗
2
and 𝑥∗

1
together,

since they are sampled from the same source of randomness. Overall, the noise in 𝑥∗
3
comes from three sources, the reused noise of 𝑍1, 𝑍2,

and the fresh noise 𝑍3. Similar to the previous timestamp, we can rewrite the explicit expression for 𝑣𝑎𝑟 [𝑥∗
3
] as:

𝑣𝑎𝑟 [𝑥∗
3
] =

(
(1 − 𝑟 (1)

3
− 𝑟 (2)

3
) + 4𝐶 · 𝑟 (1)

3
+ 2𝐶 · 𝑟 (2)

3

)
2

+ 1(
(1 − 2𝐶)2 + 1

)
2
·
(
𝑟
(2)
3

)
2

+ 1 ·
(

1 − 2𝐶
(1 − 2𝐶)2 + 1

· 𝑟 (2)
3
+ 𝑟 (1)

3

)
2

. (31)

Following Eq. (31), the mechanism computes the optimal (𝑟 (1)
3

, 𝑟
(2)
3
) that minimizes Eq. (31), and the value of 𝑣𝑎𝑟 [𝑍3] is also determined in

this way. Similar to the previous timestamp, this problem can be seen as a quadratic programming instance of two dimensions, denote the

column vector (𝑟 (1)
3

, 𝑟
(2)
3
) as 𝑟 :

min

𝑟

1

2

𝑟𝑇𝐻𝑟 + 𝑓 𝑇 𝑟

s.t. 0 ≤ 𝑟 ≤ 1

𝑟
(1)
3
+ 𝑟 (2)

3
≤ 1

(32)

where 𝑓 = (−2(1− 4𝐶),−2(1− 2𝐶)), and the 2−by−2matrix 𝐻 is

(
𝑎 𝑏

𝑐 𝑑

)
, with 𝑎 = 2(1− 4𝐶)2 + 2 > 0, 𝑏 = 𝑐 = 2(1− 4𝐶) (1− 2𝐶) + 2(1−2𝐶)

(1−2𝐶)2+1

and 𝑑 = 2(1 − 2𝐶)2 + 2

(1−2𝐶)2+1 > 0. The gradient of the objective function is 𝐻𝑟 + 𝑓 . In particular, we consider the gradient towards the

direction of (1 − 2𝐶,−1 + 4𝐶) at any point 𝑟 = (𝑟 (1)
3

, 𝑟
(2)
3
) in the feasible region. Through algebraic calculation, it is easy to see that this

gradient is non-negative. In other words, the value of the objective function is non-decreasing along the direction of (1 − 2𝐶,−1 + 4𝐶) (since
that 1− 2𝐶 > 1− 4𝐶). Hence, the optimal (minimum) solution must be from the boundary {(𝑟 (1)

3
, 𝑟
(2)
3
) : 𝑟 (1)

3
= 0, 0 ≤ 𝑟

(2)
3
≤ 1} (see Figure 5),

and the optimal 𝑟
(2)
3

is determined as in our original draft. Accordingly, the optimal strategy is to utilize 𝑥2 only when releasing noisy 𝑥3. A

similar argument of utilizing 𝑥𝑖−1 only when releasing noisy 𝑥𝑖 applies to all subsequent timestamps 𝑖 > 3 and we omit the details here.

In conclusion, CGM, which utilizes only the noise from the previous timestamp, is optimal among all correlated noise injection mechanisms

for privately releasing streaming data with differential bound constraints.

A.2 Empirical vs. Theoretical Performance of CGM
This appendix compares the empirical performance of CGM with its theoretical analysis through additional experiments of CGM with

varying clipping threshold 𝐶 . In particular, the empirical error of CGM comes from two sources: (i) the error due to clipping the differential

between neighboring data items, and (ii) the error due to additive Gaussian noise to satisfy LDP. When (i) is negligible compared with (ii),

the empirical performance of CGM is close to its theoretical guarantee as stated in Theorem 5.1. Conversely, when (i) is large, i.e., when the

differential bound assumption (explained in Section 3.1) is violated, the empirical error of CGM can be significantly higher than that given

by Theorem 5.1.

Figure 5: The illustration for the quadratic programming problem defined as in Eq. (32). The feasible region is colored in red.
The value of the objective function is non-decreasing along the direction of (1 − 2𝐶,−1 + 4𝐶) (colored in blue). Hence, the
minimum solution to this problem must be from the boundary {(𝑟 (1)

3
, 𝑟
(2)
3
) : 𝑟 (1)

3
= 0, 0 ≤ 𝑟

(2)
3
≤ 1}. If, to the contrary, the

minimum solution 𝑟𝑜𝑝𝑡 is not from the boundary {(𝑟 (1)
3

, 𝑟
(2)
3
) : 𝑟 (1)

3
= 0, 0 ≤ 𝑟

(2)
3
≤ 1}, then one can always find another solution

𝑟 ′𝑜𝑝𝑡 by starting from 𝑟𝑜𝑝𝑡 and go along the direction of (−1+2𝐶, 1−4𝐶) (along the blue dashed line) until crossing the boundary

{(𝑟 (1)
3

, 𝑟
(2)
3
) : 𝑟 (1)

3
= 0, 0 ≤ 𝑟

(2)
3
≤ 1}. It is easy to see that 𝑟 ′𝑜𝑝𝑡 is at least as good as 𝑟𝑜𝑝𝑡 since the value of the objective function

does not increase along the direction of (−1+2𝐶, 1−4𝐶) and we’ve reached a contradiction. Hence, the minimum solutionmust
be from the boundary {(𝑟 (1)

3
, 𝑟
(2)
3
) : 𝑟 (1)

3
= 0, 0 ≤ 𝑟

(2)
3
≤ 1}.

In Figure 6 (resp. Figure 7), we plot the error due to bias by clipping in CGM, the empirical error of CGM (which includes the error due to

clipping bias), the theoretical error of CGM, and the empirical error of the baseline solution on the Kaggle Web Traffic dataset (resp. Beijing

taxi dataset), with varying clipping threshold 𝐶 ∈ {100, 200, 500, 1000} (resp. 𝐶 ∈ {0.01, 0.02, 0.05, 0.1}), privacy parameter 𝜖 ∈ {0.25, 0.5, 1, 2}
and 𝛿 fixed to 10

−5
. From the results on Beijing taxi dataset (Figure 7), we observe that the difference between the theoretical and empirical

errors of CGM is negligible. This is because the error due to bias is small compared with the noise due to DP, as is evident from the figure.

Regarding the Kaggle web dataset (Figure 6), the difference between the theoretical and empirical errors of CGM is negligible compared

with the error of the baseline under a strong privacy guarantee (see Figures 6a and 6b); while the error due to bias in CGM is comparable

to the error due to privacy in CGM under a relatively weak privacy guarantee (see Figures 6c and 6d). As a result, there is a notable

difference between the empirical error of CGM and the theoretical analysis in Figures 6a and 6b. Overall, the difference between the empirical

performance and the theoretical guarantee of CGM decreases when 𝐶 increases. In addition, the difference is more notable for a larger value

of 𝜖 . Despite this, by exploiting the enforced correlation, CGM significantly reduces the error due to privacy, which more than compensates

the error due to bias. As a result, CGM consistently outperforms the baseline approach under various settings of the clipping threshold 𝐶 for

both datasets.

A.3 CGM with Data Stream Subsampling
FAST [22, 23] samples the data stream and only perturbs data items of the sampling points. This sampling technique is orthogonal to CGM.

In this subsection, we provide experimental results of combining CGM with this data stream subsampling technique.

For the Beijing taxi dataset (see Figure 8), we only run CGM and the baseline approach for the odd timestamps with the same overall

privacy budget of 𝜖 ∈ {0.25, 0.5, 1, 2} and 𝛿 = 10
−5
. For the Kaggle web traffic dataset (see Figures 9 and 10), we have two experiment settings.

In the first setting, we double (without loss of generality) the daily privacy budget for the odd days. Namely, we allocate a daily privacy

budget of 𝜖 ∈ {0.5, 1, 2, 4} and 𝛿 = 10
−5

to only the odd days and run CGM and the baseline approach only for those days. In the second

setting, we allocate an overall privacy budget of 𝜖 ∈ {5, 10, 20, 50} and 𝛿 = 10
−5

to only the odd days and run CGM and the baseline approach

only for those days. Note that the differential bound for adjacent odd timestamps in CGM are set twice as much as in the original draft, since

we only need to process the odd timestamps. Finally, the error is calculated on all odd and even timestamps. From Figures 8, 9 and 10, it is

clear that CGM still improves the utility when combined with the data stream subsampling technique.

A.4 CGM with Lagged Temporal Autocorrelations
In this appendix, we outlines the application of CGM on data streams with temporal autocorrelations, where the lag is more than 1 timestamp,

which is briefly mentioned in Section 3.1. Let us consider a lag of ℎ. Without loss of generality, we focus on the case that ℎ divides 𝑙 (the total

length of the data stream). Namely, for the 𝑘-th user, ∥𝑥𝑘,ℎ ·𝑖+𝑗 − 𝑥𝑘,ℎ · (𝑖+1)+𝑗 ∥ ≤ 𝐶 for all 1 ≤ 𝑖 ≤ 𝑙
ℎ
and 1 ≤ 𝑗 ≤ ℎ. For example, if ℎ = 7, we

can think of the data items as they arrive daily; to be more specific, the (ℎ · 𝑖 + 𝑗)-th data item arrives on the 𝑗-th day of the 𝑖-th week.

0 100 200 300 400 500

10
−2

10
0

10
2

10
4

10
6

timestamp

M
S
E

C=100 for CGM

0 100 200 300 400 500

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

timestamp

M
S
E

C=200 for CGM

0 100 200 300 400 500

10
−2

10
0

10
2

10
4

10
6

timestamp

M
S
E

C=500 for CGM

0 100 200 300 400 500

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

timestamp

M
S
E

C=1000 for CGM

baseline

CGM

error due to clipping

CGM in theory

(a) Daily privacy budget 𝜖 = 0.25 and 𝛿 = 10
−5

0 100 200 300 400 500

10
−2

10
0

10
2

10
4

10
6

timestamp

M
S
E

C=100 for CGM

0 100 200 300 400 500

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

timestamp

M
S
E

C=200 for CGM

0 100 200 300 400 500

10
−2

10
0

10
2

10
4

10
6

timestamp

M
S
E

C=500 for CGM

0 100 200 300 400 500

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

timestamp

M
S
E

C=1000 for CGM

(b) Daily privacy budget 𝜖 = 0.5 and 𝛿 = 10
−5

0 100 200 300 400 500

10
−2

10
0

10
2

10
4

10
6

timestamp

M
S
E

C=100 for CGM

0 100 200 300 400 500

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

timestamp

M
S
E

C=200 for CGM

0 100 200 300 400 500

10
−2

10
0

10
2

10
4

10
6

timestamp

M
S
E

C=500 for CGM

0 100 200 300 400 500

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

timestamp

M
S
E

C=1000 for CGM

(c) Daily privacy budget 𝜖 = 1 and 𝛿 = 10
−5

0 100 200 300 400 500

10
−2

10
0

10
2

10
4

10
6

timestamp

M
S
E

C=100 for CGM

0 100 200 300 400 500

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

timestamp

M
S
E

C=200 for CGM

0 100 200 300 400 500

10
−2

10
0

10
2

10
4

10
6

timestamp

M
S
E

C=500 for CGM

0 100 200 300 400 500

10
−1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

timestamp

M
S
E

C=1000 for CGM

(d) Daily privacy budget 𝜖 = 2 and 𝛿 = 10
−5

Figure 6: Empirical performance of CGM,which does take into the account of the error due to bias by clipping, and the baseline
approach on the Kaggle Web Traffic dataset, with varying daily privacy budget 𝜖 ∈ {0.25, 0.5, 1, 2} and 𝛿 = 10

−5. For CGM, the
differential bound varies from {100, 200, 500, 1000}. We also include the error due to bias by clipping in CGM and the theoretical
error of CGM, which does not take into the account of the error due to bias, in the figure for comparison.

Next, we explain how to apply CGM to this data stream. In terms of privacy, we can view the entire data stream of length 𝑙 as the output

and apply Lemma 5.3, which is exactly the same as what we do for the case of ℎ = 1. Next, we can just plug 𝑖 into Eq. (21) and Eq. (22) to get

the values of the reuse ratio and the scale of the fresh noise, respectively. Following the same example of ℎ = 7, we have that the reuse ratio

remains the same throughout a week, and the reused noise is from the same day in the previous week. The corresponding algorithm is

outlined as Algorithm 4.

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.01 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.02 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.05 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.1 for CGM

baseline

CGM

error due to clipping

CGM in theory

(a) Total privacy budget 𝜖 = 0.25 and 𝛿 = 10
−5

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.01 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.02 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.05 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.1 for CGM

(b) Total privacy budget 𝜖 = 0.5 and 𝛿 = 10
−5

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.01 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.02 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.05 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.1 for CGM

(c) Total privacy budget 𝜖 = 1 and 𝛿 = 10
−5

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.01 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.02 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.05 for CGM

0 10 20 30 40

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1
10

0

timestamp

M
S
E

C=0.1 for CGM

(d) Total privacy budget 𝜖 = 2 and 𝛿 = 10
−5

Figure 7: Empirical performances of CGM, which does take into the account of the error due to bias by clipping, and the
baseline approach on the Beijing Taxi dataset, with varying total privacy budget 𝜖 ∈ {0.25, 0.5, 1, 2} and 𝛿 = 10

−5. For CGM, the
differential bound varies from {0.01, 0.02, 0.05, 0.1}. We also include the error due to bias by clipping in CGM and the theoretical
error of CGM, which does not take into the account of the error due to bias, in the figure for comparison.

A.5 CGM under Rényi Differential Privacy
In this subsection, we show how to apply CGM under Rényi Differential Privacy (RDP) [33]. A similar reasoning applies for zCDP [10] and

we omit the details here for brevity.

We first briefly explain why CGM works under RDP with no modifications to the reuse ratio. This is because the 𝛼-th order Rényi

divergence between two Gaussian distributionsN(0, 𝜎2) andN(0, 𝜎2) is equal to 𝛼`2

𝜎2
(Proposition 7 in [33]). Essentially, this means that the

0 10 20 30 40

0

0.2

0.4

0.6

0.8

timestamp

total 𝜖 =0.25, 𝛿 = 10
−5

0 10 20 30 40

0

5 · 10−2

0.1

0.15

0.2

timestamp

M
S
E

total 𝜖 =0.5, 𝛿 = 10
−5

0 10 20 30 40

0

2

4

6

·10−2

timestamp

total 𝜖 =1, 𝛿 = 10
−5

0 10 20 30 40

0

0.5

1

1.5

2

·10−2

timestamp

total 𝜖 =2, 𝛿 = 10
−5

baseline w/ subsampling

CGM w/ subsampling

Figure 8: Utility performances of CGM at the odd timestamps and the baseline approach at the odd timestamps on the Beijing
Taxi dataset, with varying total privacy budget for all updates 𝜖 ∈ {0.25, 0.5, 1, 2} and 𝛿 = 10

−5. For CGM, the differential bound
is fixed to 2 ×𝐶 = 0.1 (where 𝐶 = 0.05, as in the original draft) for adjacent odd timestamps. The whole space is normalized to
[0, 1] × [0, 1], and the query region is [0.45, 0.55] × [0.45, 0.55].

0 100 200 300 400 500

0

1

2

3

·105

timestamp

M
S
E

daily 𝜖 =0.5, 𝛿 = 10
−5

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

·105

timestamp

M
S
E

daily 𝜖 =1, 𝛿 = 10
−5

0 100 200 300 400 500

0

1

2

3

4

·104

timestamp

M
S
E

daily 𝜖 =2, 𝛿 = 10
−5

0 100 200 300 400 500

0

0.5

1

1.5

2

·104

timestamp

M
S
E

daily 𝜖 =4, 𝛿 = 10
−5

baseline w/ subsampling

CGM w/ subsampling

Figure 9: Utility performances of CGM at the odd timestamps and the baseline approach at the odd timestamps on the Kaggle
Web Traffic dataset, with daily privacy budget 𝜖 ∈ {0.5, 1, 2, 4} and 𝛿 = 10

−5 for each odd day. For CGM, the differential bound is
fixed to 2 ×𝐶 = 1000 (where 𝐶 = 500, as in the original draft).

0 100 200 300 400 500

0

0.5

1

1.5
·106

timestamp

M
S
E

total 𝜖 =5, 𝛿 = 10
−5

0 100 200 300 400 500

0

1

2

3

4

5

·105

timestamp

M
S
E

total 𝜖 =10, 𝛿 = 10
−5

0 100 200 300 400 500

0

0.5

1

1.5

2

·105

timestamp

M
S
E

total 𝜖 =20, 𝛿 = 10
−5

0 100 200 300 400 500

0

2

4

6

·104

timestamp

M
S
E

total 𝜖 =50, 𝛿 = 10
−5

baseline w/ subsampling

CGM w/ subsampling

Figure 10: Utility performances of CGM at the odd timestamps and the baseline approach at the odd timestamps on the Kaggle
Web Traffic dataset, with overall privacy budget 𝜖 ∈ {5, 10, 20, 50} and 𝛿 = 10

−5 for all odd days. For CGM, the differential bound
is fixed to 2 ×𝐶 = 1000 (where 𝐶 = 500, as in the original draft).

scale of the Gaussian noise is linear with respect to the sensitivity of the function. Hence, CGM, which is based on this linear relationship

between scale of the noise and the sensitivity, adheres to the same set of reuse ratio under RDP and (𝜖, 𝛿)-DP.
Next, we walk through the baseline approach for streaming data release under RDP. Recall from Corollary 3 in [33], adding a Gaussian

noiseN(0, 𝜎2I) to a function of sensitivity 1 satisfies (𝛼, 𝛼
2𝜎2
)-RDP. Hence, to achieve (𝛼, 𝜖)-RDP, it suffices to add a Gaussian noiseN(0, 𝛼𝜖

2
I)

to the function. Similarly,

Corollary A.1. Given a data stream {𝑥𝑘,1, . . . , 𝑥𝑘,𝑙 } of length 𝑙 , where each data item satisfies ∥𝑥𝑘,𝑖 ∥ ≤ 1

2
for 1 ≤ 𝑖 ≤ 𝑙 , adding a Gaussian

noise N(0, 𝛼𝜖𝑙
2
I) repeatedly at each timestamp to 𝑥𝑘,𝑖 satisfies (𝛼, 𝜖)-RDP for the entire data stream.

Algorithm 4: CGM for streaming data with periodic correlations

Input: data items {𝑥𝑘,ℎ ·𝑖+𝑗 } (1 ≤ 𝑖 ≤ 𝑙
ℎ
and 1 ≤ 𝑗 ≤ ℎ), where ∥𝑥𝑘,ℎ ·𝑖+𝑗 ∥ ≤ 1

2
and ∥𝑥𝑘,ℎ ·𝑖+𝑗 − 𝑥𝑘,ℎ · (𝑖+1)+𝑗 ∥ ≤ 𝐶 , privacy parameters

𝜖, 𝛿 .

Output: private estimates {𝑥∗
𝑘,ℎ ·𝑖+𝑗 }

1 for 𝑖 = 1 to 𝑙
ℎ
do

2 for 𝑗 = 1 to ℎ do
3 if 𝑖 = 1 then
4 𝑥∗

𝑘,ℎ ·𝑖+𝑗 ←− 𝑥𝑘,ℎ ·𝑖+𝑗 + N(0, 𝜎21 · I), where 𝜎1 is computed as in Eq. (14).

5 𝑣1 ←− 1.

6 else
7 𝑟𝑖 ←− 1−2𝐶

(1−2𝐶)2+𝑣𝑖−1 .

8 𝜎𝑖 ←− ((1 − 𝑟𝑖) + 𝑟𝑖 · 2𝐶) · 𝜎1.
9 𝑥∗

𝑘,ℎ ·𝑖+𝑗 ←− 𝑥𝑘,ℎ ·𝑖+𝑗 + N(0, 𝜎2𝑖 · I) + 𝑟𝑖 · 𝛾𝑘,ℎ · (𝑖−1)+𝑗 , where 𝛾𝑘,ℎ · (𝑖−1)+𝑗 is the noise injected in 𝑥∗
𝑘,ℎ · (𝑖−1)+𝑗 .

10 𝑣𝑖 ←− 𝑣𝑖−1
(1−2𝐶)2+𝑣𝑖−1 .

11 Output 𝑥∗
𝑘,ℎ ·𝑖+𝑗

Algorithm 5: Gaussian mechanism for streaming data under RDP

Input: data items {𝑥𝑘,𝑖 }𝑙𝑖=1, where ∥𝑥𝑘,𝑖 ∥ ≤
1

2
and ∥𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1∥ ≤ 𝐶 , privacy parameters 𝜖, 𝛼 .

Output: perturbed estimates {𝑥∗
𝑘,𝑖
}𝑙
𝑖=1

.

1 for 𝑖 = 1 to 𝑙 do
2 𝑥∗

𝑘,𝑖
←− 𝑥𝑘,𝑖 + N(0, 𝜎2I); where 𝜎 is computed as in Corollary A.1 and I is the 𝑑 × 𝑑 dimension identity matrix.

3 Output 𝑥∗
𝑘,𝑖
;

Algorithm 6: CGM for streaming data under RDP

Input: data items {𝑥𝑘,𝑖 }𝑙𝑖=1, where ∥𝑥𝑘,𝑖 ∥ ≤
1

2
and ∥𝑥𝑘,𝑖 − 𝑥𝑘,𝑖−1∥ ≤ 𝐶 , privacy parameters 𝜖, 𝛼 .

Output: private estimates {𝑥∗
𝑘,𝑖
}𝑙
𝑖=1

.

1 for 𝑖 = 1 to 𝑙 do
2 if 𝑖 = 1 then
3 𝑥∗

𝑘,𝑖
←− 𝑥𝑘,𝑖 + N(0, 𝜎2 · I), where 𝜎 is computed as in Corollary A.1.

4 𝑣1 ←− 1.

5 else
6 𝑟𝑖 ←− 1−2𝐶

(1−2𝐶)2+𝑣𝑖−1 .

7 𝜎𝑖 ←− ((1 − 𝑟𝑖) + 𝑟𝑖 · 2𝐶) · 𝜎 .
8 𝑥∗

𝑘,𝑖
←− 𝑥𝑘,𝑖 + N(0, 𝜎2𝑖 · I) + 𝑟𝑖 · 𝛾𝑘,𝑖−1, where 𝛾𝑘,𝑖−1 is the noise injected in 𝑥∗

𝑘,𝑖−1.

9 𝑣𝑖 ←− 𝑣𝑖−1
(1−2𝐶)2+𝑣𝑖−1 .

10 Output 𝑥∗
𝑘,𝑖

Finally, to apply CGM under RDP, it suffices to compute the 𝜎 for the baseline approach according to Corollary A.1. And at each timestamp,

the reuse ratio and the variance for the fresh noise are determined by the following two equations, respectively:

𝑟𝑖 =
1 − 2𝐶

(1 − 2𝐶)2 + 4𝐶−4𝐶2

1−(1−2𝐶)2𝑖−2
, (33)

𝜎2
𝑖,fresh

= (1 − 𝑟𝑖 + 𝑟𝑖 · 2𝐶)2𝜎2 . (34)

We outline the baseline approach and CGM in Algorithms 5 and 6, respectively.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Local Differential Privacy
	2.2 Analytic Gaussian Mechanism

	3 Problem Setting
	3.1 Problem Definition
	3.2 Naive Solutions

	4 Correlated Gaussian Mechanism
	4.1 Rationale
	4.2 Formalization of CGM in the General Form
	4.3 Applying CGM to Streaming Data Collection

	5 Theoretical Analysis
	5.1 Main Result
	5.2 Proof of Theorem 5.1

	6 experiments
	6.1 Evaluations on Kaggle Web Traffic Dataset
	6.2 Evaluations on Beijing Taxi Dataset
	6.3 Effect of Differential Bound C

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Utility Analysis of CGM
	A.2 Empirical vs. Theoretical Performance of CGM
	A.3 CGM with Data Stream Subsampling
	A.4 CGM with Lagged Temporal Autocorrelations
	A.5 CGM under Rényi Differential Privacy

