
Skellam Mixture Mechanism: a Novel Approach to Federated
Learning with Differential Privacy

Ergute Bao

National University of

Singapore

bao@u.nus.edu

Yizheng Zhu

National University of

Singapore

yzhu@nus.edu.sg

Xiaokui Xiao

National University of

Singapore

xkxiao@nus.edu.sg

Yin Yang

Hamad Bin Khalifa

University

yyang@hbku.edu.qa

Beng Chin Ooi

National University of

Singapore

ooibc@comp.nus.edu.sg

Benjamin Hong Meng

Tan

A*STAR, Singapore

benjamin_tan@i2r.a-

star.edu.sg

Khin Mi Mi Aung

A*STAR, Singapore

mmaung@i2r.a-star.edu.sg

ABSTRACT
Deep neural networks have strong capabilities of memorizing the

underlying training data, which can be a serious privacy concern.

An effective solution to this problem is to train models with dif-
ferential privacy (DP), which provides rigorous privacy guarantees

by injecting random noise to the gradients. This paper focuses on

the scenario where sensitive data are distributed among multiple

participants, who jointly train a model through federated learning,
using both secure multiparty computation (MPC) to ensure the confi-
dentiality of each gradient update, and differential privacy to avoid

data leakage in the resulting model. A major challenge in this set-

ting is that common mechanisms for enforcing DP in deep learning,

which inject real-valued noise, are fundamentally incompatible with

MPC, which exchanges finite-field integers among the participants.

Consequently, most existing DP mechanisms require rather high

noise levels, leading to poor model utility.

Motivated by this, we propose Skellam mixture mechanism
(SMM), a novel approach to enforcing DP on models built via fed-

erated learning. Compared to existing methods, SMM eliminates

the assumption that the input gradients must be integer-valued,

and, thus, reduces the amount of noise injected to preserve DP.

Further, SMM allows tight privacy accounting due to the nice com-

position and sub-sampling properties of the Skellam distribution,

which are key to accurate deep learning with DP. The theoretical

analysis of SMM is highly non-trivial, especially considering (i) the

complicated math of differentially private deep learning in general

and (ii) the fact that the mixture of two Skellam distributions is

rather complex, and to our knowledge, has not been studied in the

DP literature. Extensive experiments on various practical settings

demonstrate that SMM consistently and significantly outperforms

existing solutions in terms of the utility of the resulting model.

PVLDB Reference Format:
Ergute Bao, Yizheng Zhu, Xiaokui Xiao, Yin Yang, Beng Chin Ooi,

Benjamin Hong Meng Tan, and Khin Mi Mi Aung. Skellam Mixture

Mechanism: a Novel Approach to Federated Learning with Differential

Privacy. PVLDB, 15(11): XXX-XXX, 2022.

doi:XX.XX/XXX.XX

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/SkellamMixtureMechanism/SMM.

1 INTRODUCTION
Deep neural networks, especially large-scale ones such as GPT-

3 [11], are known for their excellent memorization capabilities [25,

47, 56]. However, it is rather difficult to control what exactly the

neural net memorizes, and unintended data memorization can be a

serious concern when the underlying training data contains sen-

sitive information [13]. For instance, consider a bank that trains

a GPT-like language model on call center transcripts. Due to data

memorization, it is possible to extract sensitive information by let-

ting the model auto-complete a prefix, e.g., “my account number is:

__”. Clearly, if such a model (or its API) is exposed to the adversary,

it becomes a ligation machine as attackers can attempt with various

prefixes to extract sensitive data, and subsequently sue the bank for

privacy violations. Shokri et al. [46] report that simple and intuitive

measures often fail to provide sufficient protection, and the only

way found to completely address the issue is to train the model

with the rigorous guarantees of differential privacy (DP) [21].
This paper focuses on the scenario that multiple individual par-

ticipants jointly train a machine learning model using federated
learning (FL) [38] through distributed stochastic gradient descent

(SGD) [1, 16, 18, 37]. Specifically, in every iteration, each individual

computes the gradients with respect to the current model weights

based on her own data; then, gradients from all participants are

aggregated to update the model. Note that the gradients from

each individual may reveal sensitive information about her pri-

vate dataset [39, 42, 45, 46, 55]. A common approach to addressing

this problem is by employing a secure multiparty computation (MPC)
protocol [5, 8, 14, 17, 26, 30, 54], which computes the aggregate gra-

dients while preserving the confidentiality of the gradients from

each individual participant. One advantage of MPC is that it does

not require a trusted third party, which can be difficult to establish

in some applications, e.g., in finance and healthcare.

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.

doi:XX.XX/XXX.XX

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/SkellamMixtureMechanism/SMM
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX


Note that although MPC protects individuals’ privacy in the gra-

dient update process by concealing the gradient values of each par-

ticipant, it does not provide any protection against data extraction

attacks caused by unintended data memorization [23, 39, 48, 49]. As

mentioned earlier, an effective methodology to defend against such

attacks is to perturb the gradients to satisfy differential privacy [46].

Since there is no trusted third-party in our setting, such gradient per-

turbations need to be done in a decentralized fashion. In particular,

each FL participant first adds noise to her own gradients; then, the

participants collectively aggregate their noisy gradients, through a

cryptographically secure protocol, e.g., SecAgg [10], which ensures

that (i) the server, who later updates the model based on the aggre-

gated outcome, learns nothing about the perturbed gradients but

the outcome itself, and (ii) no participant learns private information

about other participants’ data, except for the aggregated outcome.

Hence, the privacy cost incurred at each iteration only depends

upon the sensitivity of the sum of the gradients, as well as the

distribution of the aggregated noise. This framework is referred to

as distributed differential privacy [27, 31], elaborated in Section 2.4.

Although gradient perturbation under DP has been studied in

previous work, it is far from trivial to adapt centralized DP solutions

to the distributed setting. For instance, consider the classic DPSGD
algorithm [2], in which a centralized party injects random Gaussian

noise to the gradient sum in each iteration of the model training

process. There are two major challenges for adapting DPSGD to

distributed DP. First, the Gaussian distribution is defined over the

domain of all real numbers, whereas existing MPC protocols, to

our knowledge, require inputs to be represented as integers (more

precisely, finite field elements) [9, 10, 43]. Although we could sam-

ple a real value from the Gaussian distribution, and then quantize

the value to an integer, the resulting quantized samples would no

longer follow the Gaussian distribution, which, strictly speaking, in-

validates the proof in [2] that the method satisfies DP. Second, even

if we ignore the privacy risk of using quantized Gaussian samples

in DPSGD [2], the privacy analysis of the algorithm also relies on

certain mathematical properties of the Gaussian distribution, which

no longer hold with quantized samples. Such properties include:

(i) the sum of 𝑛 values sampled from i.i.d. unit-variance Gaussian

distribution follows the Gaussian distribution with variance 𝑛, and

(ii) there exists a tight upper bound for the Rényi divergence [40]

between two Gaussian distributions. These issues have been largely

neglected by earlier distributed DP solutions, e.g., [27, 50, 51].

Recently, three methods [3, 4, 31] were proposed to address the

above problem. A common high-level idea of these methods is

to require that each participant of FL inject symmetric integer-

valued noise (e.g., binomial noise in [4]) to the gradients during

each iteration of the training process. Here, the original values

of the gradients are assumed to have bounded norms and are

integer-valued, elaborated soon. Next, we point out the main draw-

back of existing methods, which motivates our proposed solution.

Recall the two assumption made above: gradients have bounded

norms and are integer-valued. While the bounded norm assump-

tion can be enforced by gradient clipping as is done in DPSGD [2],

the integer-valued gradients assumption requires a more compli-

cated pre-processing step accompanied by a careful privacy anal-

ysis. Here, we briefly explain how existing works enforce this as-

sumption, and we defer a detailed discussion to Section 5. Ref. [4]

stochastically rounds the gradients to integers. For example, if

𝑥 = {0.01, 0.01, . . . , 0.01} ∈ R𝑑 , then each dimension of 𝑥 is rounded

to 1 with 0.01 probability, and to 0 with 0.99 probability. While the

rounded gradient’s expectation equals the original one, the norm

of the rounded gradient could be significantly larger than the orig-

inal one. In our example, 𝑥 = {0.01, 0.01, . . . , 0.01} ∈ R𝑑 could be

rounded to {1, 1, . . . , 1}, causing an almost

√
𝑑 the increase in L2

norm. Such an increased sensitivity leads to higher amount of per-

turbations required to satisfy DP, which, in turn, leads to reduced

model utility. Ref. [31] proposes a more complicated conditional

rounding process to alleviates (to a limited degree) the problem of

increased sensitivity, at the expense of introducing additional bias

terms to the resulting gradients, as explained in Section 5.

Our Contributions. In this work, we propose the Skellam mix-
ture mechanism (SMM), a new solution for enforcing distributed

differential privacy for federated learning. SMM works by injecting

random noise drawn from the mixture of two shifted symmetric

Skellam distributions. Unlike existing solutions, SMM does not re-
quire its inputs (i.e., the gradients in FL) to be integer-valued. This
eliminates the need for the process of stochastic rounding the gra-

dients, leading to lower noise level required to satisfy DP, and, thus,

higher utility of the resulting model. In particular, with carefully

selected mixture coefficients and Skellam distribution parameters,

SMM produces private and unbiased integer-valued gradient ag-

gregates for updating the model. We prove that SMM satisfies both

Rényi-DP and (𝜖 , 𝛿)-DP, defined in Section 2. Meanwhile, SMM
is compatible with the DPSGD [2] framework and its moment ac-

countant analysis technique, leading to tight bounds on the privacy

loss analysis, similar to our competitors [3, 31].

The privacy analysis of SMM is rather challenging, and is a

major contribution of the paper. Note that although the Skellam

distribution has been used in previous solution [3], the privacy

analysis in [3] does not apply to our setting, since the random noise

in SMM is sampled from a mixture of two shifted symmetric Skel-

lam distributions, which is more complex than the single Skellam

distribution as in [3]. Further, it is unclear how to derive a tight

privacy bound for SMM using the results and mathematical tools

built in [3]. One major reason is the privacy bound in Ref. [3] for

the Skellam noise requires upper-bounding both the L1 and L2

sensitivity of the input, and it is unclear how this bound can be ex-

tended to the case of a Skellam mixture distribution. To tackle this

problem, we first derive a cleaner privacy bound for the Skellam

noise that only involves the L2 sensitivity, which is the foundation

of our privacy analysis for SMM. Our analysis technique for the

Skellam distribution is of independent interest, and can be applied

to the setting of [3] to improve its privacy bounds by removing the

dependency on the input’s L1 sensitivity.

We apply SMM to federated learning with distributed SGD, and

present the complete training algorithm. Asmentioned above, SMM
improves model utility by eliminating the step of rounding the

gradients, which often significantly increases the sensitivity of the

inputs, especially for large models. Extensive experiments using

benchmark datasets demonstrate that SMM achieves consistent

and significant utility gains over its competitors, under a variety of

settings with different privacy and communication constraints.



2 PRELIMINARIES
2.1 Skellam Distribution
A random variable𝑌 follows a Poisson distribution of parameter 𝜆 if

its probability distribution is Pr[𝑌 = 𝑘] = exp(−𝜆)𝜆𝑘
𝑘!

, 𝑘 = 0, 1, 2, . . ..

Both the mean and variance of𝑌 is 𝜆. A random variable𝑍 follows a

Skellam distribution if it is the difference between two independent

Poisson variables 𝑌1 and 𝑌2. In this work, we restrict our attention

to the case where 𝑌1 and 𝑌2 have the same parameter 𝜆. In this case,

the probability distribution of 𝑍 is

Pr[𝑍 = 𝑘] = exp(−2𝜆)𝐼 |𝑘 | (2𝜆), 𝑘 = 0,±1,±2, . . . ,

where 𝐼𝑣 (𝑢) ≜
∑∞
ℎ=0

1

ℎ!Γ (ℎ+𝑣+1)
(
𝑢
2

)
2ℎ+𝑣

is the modified Bessel func-

tion of the first kind. We write that 𝑍 ∼ Sk(𝜆, 𝜆). By linearity of

expectation, 𝑍 has mean 0 and variance 2𝜆.

Skellam distributions have an important property: they are “ad-

ditive”, in the sense that for any two independent Skellam random

variables 𝑍1 ∼ 𝑆𝑘 (𝜆1, 𝜆1), and 𝑍2 ∼ 𝑆𝑘 (𝜆2, 𝜆2), their sum 𝑍1 + 𝑍2
follows a Skellam distribution 𝑆𝑘 (𝜆1 + 𝜆2, 𝜆1 + 𝜆2). This property
is crucial in our analysis of the privacy guarantee of the Skellam

mixture noise used in our solution.

2.2 Rényi Divergence
Definition 1 (Rényi Divergence [52]). Assuming that distribu-

tions 𝑃 and 𝑄 are defined over the same domain, and 𝑃 is absolute
continuous with respect to 𝑄 , then the Rényi divergence of 𝑃 from 𝑄

of finite order 𝛼 ∈ (0, 1) ∪ (1,∞) is defined as:

𝐷𝛼 (𝑃 ∥𝑄) =
1

𝛼 − 1 logE𝑋∼𝑃

[(
𝑃 (𝑋 )
𝑄 (𝑋 )

)𝛼−1]
,

where we adopt the convention that 0

0
= 0 and 𝑦

0
= ∞ for any 𝑦 > 0,

and the logarithm is with base 𝑒 .

We next present some useful properties of Rényi divergence.

Theorem 1 (Convexity [52]). For any order 𝛼 ∈ [0.∞] and
0 < 𝜆 < 1, Rényi divergence is convex in its second argument. That is,
for any probability distributions 𝑃,𝑄0, and 𝑄1

𝐷𝛼 (𝑃 ∥ (1−𝜆) ·𝑄0 +𝜆 ·𝑄1) ≤ (1−𝜆) ·𝐷𝛼 (𝑃 ∥𝑄0) +𝜆 ·𝐷𝛼 (𝑃 ∥𝑄1) .

Theorem 2 (Joint Quasi-convexity [52]). For any order 𝛼 ∈
[0.∞] and 0 < 𝜆 < 1, Rényi divergence is jointly quasi-convex in its
arguments, i.e., for any two pairs of probability distributions (𝑃0, 𝑄0),
and (𝑃1, 𝑄1)

𝐷𝛼 ((1 − 𝜆) · 𝑃0 + 𝜆 · 𝑃1 ∥ (1 − 𝜆) ·𝑄0 + 𝜆 ·𝑄1)
≤ max{𝐷𝛼 (𝑃0 ∥𝑄0), 𝐷𝛼 (𝑃1 ∥𝑄1)}.

2.3 Differential Privacy
We say that two datasets 𝑋 and 𝑋 ′ are neighboring if one can be

obtained by adding or removing one tuple from the other. The main

idea of differential privacy (DP) is to ensure that the outcomes of a

randomized mechanism on neighboring datasets are always similar;

intuitively, this provides plausible deniability on whether a given

data record 𝑥 belongs to the dataset 𝑋 or not, and, thus, protects

the privacy of the individual whose record is 𝑥 . A classic definition

of differential privacy is (𝜖, 𝛿)-DP [21], as follows.

Definition 2 ((𝜖, 𝛿)-Differential Privacy [21]). A random-
ized mechanismM satisfies (𝜖, 𝛿)-differential privacy (DP) if

Pr[M(𝑋 ) ∈ O] ≤ exp(𝜖) · Pr[M(𝑋 ′) ∈ O] + 𝛿,

for any set of output O ⊆ 𝑅𝑎𝑛𝑔𝑒 (M) and any neighboring datasets
𝑋 and 𝑋 ′.

Note that (𝜖, 𝛿)-DP can be considered as a worst-case privacy

guarantee for a mechanism, as it enforces an upper bound on the

probability ratio of all possible outcomes. An alternative definition

is Rényi differential privacy (RDP) [40], which is built upon the

concept of Rényi divergence, considers the average case privacy

guarantee instead.

Definition 3 (Rényi Differential Privacy [40]). A random-
ized mechanismM satisfies (𝛼, 𝜏)-Rényi differential privacy (RDP)
if 𝐷𝛼 (M(𝑋 ) ∥M(𝑋 ′)) ≤ 𝜏 for all neighboring datasets 𝑋 and 𝑋 ′.

Given a function of interest, the canonical way to make it differ-

entially private is to perturb its outcome through noise injection.

Specifically, the scale of the noise should be calibrated to the sensi-

tivity of the function of interest [21], formally defined as follows.

Definition 4 (Sensitivity). The sensitivity 𝑆 (𝐹 ) of a function
𝐹 : D → R𝑑 , denoted as 𝑆 (𝐹 ), is defined as

𝑆 (𝐹 ) = max

𝑋∼𝑋 ′
∥𝐹 (𝑋 ) − 𝐹 (𝑋 ′)∥,

where 𝑋 ∼ 𝑋 ′ denotes that 𝑋 and 𝑋 ′ are neighboring datasets, and
∥·∥ is a norm.

In particular, injecting continuous Gaussian noise sampled from

N(0, 𝜎2) to each dimension of function 𝐹 satisfies (𝛼, 𝛼𝑆
2 (𝐹 )
2𝜎2
)-

RDP [40], where 𝑆 (𝐹 ) stands for the L2 sensitivity of function

𝐹 . In many applications (e.g., training neural networks with SGD),

we also need to analyze the overall privacy guarantee of a mech-

anism consisting of multiple components. We have the following

composition and sub-sampling lemmata for RDP mechanisms.

Lemma 1 (Composition of RDP Mechanisms [40]). If mech-
anisms M1, . . . ,M𝑇 satisfy (𝛼, 𝜏1), . . . , (𝛼, 𝜏𝑇 )-RDP, respectively,
then,M1 ◦ . . . ◦M𝑇 satisfies (𝛼,∑𝑇

𝑡=1 𝜏𝑖 )-RDP.

Lemma 2 (Subsampling for RDP [41, 57]). LetM be a mecha-
nism that satisfies (𝑙, 𝜏 (𝑙))-RDP for 𝑙 = 2, . . . , 𝛼 (𝛼 ∈ Z, 𝛼 ≤ 2), and
𝑆𝑞 be a procedure that uniformly samples each record of the input
data with probability 𝑞. ThenM ◦ 𝑆𝑞 satisfies (𝛼, 𝜏)-RDP with

𝜏 =
1

𝛼 − 1 ·

log

(
(1 − 𝑞)𝛼−1 (𝛼𝑞 − 𝑞 + 1) +

𝛼∑︁
𝑙=2

(
𝛼

𝑙

)
(1 − 𝑞)𝛼−𝑙𝑞𝑙𝑒 (𝑙−1)𝜏 (𝑙)

)
.

Finally, any mechanism that satisfies (𝛼, 𝜏)-RDP also satisfies

(𝜖, 𝛿)-DP, for values of 𝜖 and 𝛿 as follows.

Lemma 3 (Converting (𝛼, 𝜏)-RDP to (𝜖, 𝛿)-DP [12]). For any
𝛼 ∈ (1,∞), if 𝐷𝛼 (M(𝑋 ) ∥M(𝑋 ′)) ≤ 𝜏 for any neighboring
databases 𝑋 and 𝑋 ′, thenM satisfies (𝜖, 𝛿)-DP for

𝜖 = 𝜏 + log(1/𝛿) + (𝛼 − 1) log(1 − 1/𝛼) − log(𝛼)
𝛼 − 1 .



2.4 Distributed Differential Privacy
The original, centralized differential privacy framework [21] as-

sumes a trusted data curator, who stores the entire private dataset

and injects random noise in its response to a query, e.g., the sum

query, which computes

∑𝑛
𝑖=1 𝑥𝑖 given input dataset𝑋 = (𝑥1, . . . , 𝑥𝑛).

The released outcome satisfies (centralized) DP, when the scale of

the noise injected is calibrated (by the centralized data curator) to

the sensitivity of the query. In this work, we focus on the distributed

differential privacy framework [15, 24, 27, 31], which involves mul-

tiple participants. Each participant injects a random noise to her

own data or query response. After that, all participants collectively

run anMPC protocol to amplify the privacy guarantee by hiding the

identities of the participants. We follow the same threat model as

in previous work [31]. In particular, all participants are honest (i.e.,

they strictly follow the protocol) but curious (i.e., each participant

tries to learn private information from another participant), and

it is assumed that no two participants collude. In this paper, we

focus on SecAgg [10] as the MPC protocol, which aggregates inputs

from participants in a crpytographically secure manner under our

threat model. Specifically, SecAgg ensures that no one (including

the participants) can infer any information about the private inputs

other than its released output. The output of SecAgg should satisfy

DP, such that it can be distributed the same way as the result from a

centralized DP solution. Accordingly, the scale of the overall noise

injected to the data or query result needs to be calibrated to the

sensitivity of each participant’s input. In other words, distributed

DP obtains the same privacy-utility trade-off as in centralized DP

setting, without relying on a trusted third party.

3 SKELLAM MIXTURE MECHANISM
Section 3.1 formalizes the problem of distributed sum estimation

under distributed DP, and Section 3.2 presents the proposed Skellam
MixtureMechanism (SMM) for this problem. Section 3.3 presents the

foundation of the privacy guarantee of SMM. Section 3.4 establish

the privacy and utility guarantees of SMM. Then, in Section 4,

we apply SMM to our main problem setting: differentially private

federated learning.

3.1 Distributed Sum Estimation with Privacy
Suppose that a multi-dimensional dataset 𝑋 = (𝑥1, . . . , 𝑥𝑛) is dis-
tributed to𝑛 individuals (referred to as participants in the following),
where participant 𝑖 possesses data point 𝑥𝑖 ∈ R𝑑 , for 𝑖 = 1, . . . , 𝑛.

An un-trusted server aims to compute the (approximate) sum of the

dataset, i.e., 𝑥 =
∑𝑛
𝑖=1 𝑥𝑖 , from the participants. Agarwal et al. [4]

propose a general framework for solving the distributed sum esti-

mation problem with distributed DP. In this framework, each par-

ticipant first perturbs her data 𝑥𝑖 with noise 𝑍𝑖 : 𝑥
∗
𝑖
← 𝑥𝑖 +𝑍𝑖 . Next,

a secure aggregation protocol SecAgg [10], run as a black box by

the participants, sums up the noisy values 𝑥∗
𝑖
from all participants,

and outputs to the server the result 𝑥∗ ← 𝑆𝑒𝑐𝐴𝑔𝑔(𝑥∗
1
, . . . , 𝑥∗𝑛).

According to Ref. [10], SecAgg ensures that no participant (or the
server) learns any information about another participant’s private

data. Hence, it suffices to derive the privacy and utility guarantees of

the following mechanismM, which injects 𝑛 independent random

Algorithm 1: One-dimensional Skellam mixture mecha-

nism (1SMM)

Input: A set of private values {𝑥1, . . . , 𝑥𝑛 | 𝑥𝑖 ∈ R}.
Parameters: Noise parameter 𝜆.

1 for 𝑖 ∈ 1..𝑛 do
2 𝑝𝑖 = 𝑥𝑖 − ⌊𝑥𝑖 ⌋.
3 Sample 𝑦𝑖 from a Bernoulli trial with success probability 𝑝𝑖

4 if 𝑦𝑖 = 0 then
5 𝑥∗

𝑖
← ⌊𝑥𝑖 ⌋ + 𝑆𝑘 (𝜆, 𝜆) .

6 else
7 𝑥∗

𝑖
← ⌊𝑥𝑖 ⌋ + 1 + 𝑆𝑘 (𝜆, 𝜆) .

8 𝑥∗ ← 𝑆𝑒𝑐𝐴𝑔𝑔 ( (𝑥∗
1
, . . . , 𝑥∗𝑛)) .

Output: 𝑥∗.

noises 𝑍𝑖 to the exact sum:

M(𝑥1, . . . , 𝑥𝑛) :=
𝑛∑︁
𝑖=1

𝑥𝑖 +
𝑛∑︁
𝑖=1

𝑍𝑖 .

In terms of privacy, we focus on the RDP definition (Defini-

tion 3), which can be converted to the classic (𝜖 , 𝛿)-DP (Definition 2)

through Lemma 3. In particular, we want that for all neighboring

datasets 𝑋,𝑋 ′,
𝐷𝛼 (M(𝑋 ) ∥M(𝑋 ′)) ≤ 𝜏,

for some 𝛼 > 1. We measure the error ofM by

𝐸𝑟𝑟M = max

𝑋 ⊂R𝑑
1

𝑑
E

M(𝑋 ) − ∑︁
𝑥 ∈𝑋

𝑥

2
2

,

where the expectation is taken over the randomness inM.

3.2 Skellam Mixture Noise
We first consider the case when each participant’s data point 𝑥𝑖 is

one-dimensional. Algorithm 1 shows the pseudo-code of our one-
dimensional Skellam mixture mechanism (1SMM) for this case. Each
participant 𝑖 first independently flips a coin with heads probability

𝑝𝑖 := 𝑥𝑖 − ⌊𝑥𝑖 ⌋ (Lines 2 and 3). If it is tails, then the participant per-

turbs ⌊𝑥𝑖 ⌋ with a noise following the Skellam distribution 𝑆𝑘 (𝜆, 𝜆)
(Lines 4 and 5); otherwise, the participant perturbs ⌊𝑥𝑖 ⌋ + 1 (i.e.,

⌈𝑥𝑖 ⌉) with a noise following the Skellam distribution 𝑆𝑘 (𝜆, 𝜆) (Lines
6 and 7). Note that, by the definitions of 𝑥∗

𝑖
and the Skellam distribu-

tion, 𝑥∗
𝑖
is guaranteed to be an integer. Finally, SecAgg aggregates

the noisy values from all the participants (Line 9), and the esti-

mated sum 𝑥∗ is released to the server. For the case in which each

participant’s data point 𝑥𝑖 is multidimensional, we simply invoke

Algorithm 1 for each dimension independently to obtain a noisy

sum of that dimension, as outlined in Algorithm 2.

The result of Algorithm 1 may appear rather difficult to analyze

at first sight, as there are 2
𝑛
possible outcomes of the Bernoulli

trials by all participants. An import insight in our analysis is that to

derive the utility guarantee of Algorithm 1, it suffices to consider

each participant independently. First, note that the perturbed value

𝑥∗
𝑖
follows a mixture of two shifted symmetric Skellam distributions

whose shifted mean values equal ⌊𝑥𝑖 ⌋ and ⌈𝑥𝑖 ⌉, respectively, and the
variance of each distribution equals 2𝜆. In addition, observe that the

weights associatedwith themixture distributions are 1−𝑥𝑖+⌊𝑥𝑖 ⌋ and
𝑥𝑖 − ⌊𝑥𝑖 ⌋, respectively. Consequently, the expectation of 𝑥∗

𝑖
equals



Algorithm 2: Multi-dimensional Skellam mixture mecha-

nism (dSMM)

Input: A set of private values {𝑥1, . . . , 𝑥𝑛 | 𝑥𝑖 ∈ R𝑑 }.
Parameters: Noise parameter 𝜆, data dimension 𝑑 .

1 for 𝑖 ∈ 1..𝑛 do
2 for 𝑗 ∈ 1..𝑑 do
3 𝑝𝑖,𝑗 = 𝑥𝑖,𝑗 − ⌊𝑥𝑖,𝑗 ⌋.
4 Sample 𝑦𝑖,𝑗 from a Bernoulli trial with success probability

𝑝𝑖,𝑗 .

5 if 𝑦𝑖,𝑗 = 0 then
6 𝑥∗

𝑖,𝑗
← ⌊𝑥𝑖,𝑗 ⌋ + 𝑆𝑘 (𝜆, 𝜆) .

7 else
8 𝑥∗

𝑖,𝑗
← ⌊𝑥𝑖,𝑗 ⌋ + 1 + 𝑆𝑘 (𝜆, 𝜆) .

9 𝑥∗ ← 𝑆𝑒𝑐𝐴𝑔𝑔 ( (𝑥∗
1
, . . . , 𝑥∗𝑛)) .

Output: 𝑥∗.

𝑥𝑖 . A corner case is that 𝑥𝑖 is an integer. In this case, the perturbed

𝑥∗
𝑖
can be seen as injecting symmetric Skellam noise 𝑆𝑘 (𝜆, 𝜆) to 𝑥𝑖

itself only. By the linearity of expectation, the expectation of 𝑥∗

also equals

∑
𝑖=1 𝑥𝑖 , i.e., 1SMM yields an unbiased estimator for the

sum of private inputs. We present the detailed privacy and utility

analysis for 1SMM and dSMM later in Section 3.4.

3.3 Skellam Noise Preserves Privacy
Before we analyze the privacy guarantee of SMM, we first show that

its building block, i.e., a single symmetric Skellam noise, preserves

privacy, formalized as follows.

Theorem 3 (Rényi divergence of Skellam distributions).

For any integer 𝑠 ∈ Z satisfying |𝑠 | ≤ Δ∞, any 𝛼 > 1, and any Δ∞
satisfying 𝛼 < 2𝜆/Δ∞ + 1, we have

𝐷𝛼 (𝑠 + 𝑆𝑘 (𝜆, 𝜆) ∥ 𝑆𝑘 (𝜆, 𝜆)) ≤
1.09𝛼 + 0.91

2

· 𝑠
2

2𝜆
. (1)

We have the following multi-dimensional extension.

Theorem 4 (Rényi divergence of multi-dimensional Skellam

distributions). Let 𝑆𝑘𝑑 (𝜆, 𝜆) denote a d-dimensional variate, where
each dimension is independently sampled from 𝑆𝑘 (𝜆, 𝜆). Then, for any
integer-valued vector 𝑠 ∈ Z𝑑 satisfying ∥𝑠 ∥2

2
≤ 𝑐 and ∥𝑠 ∥∞ ≤ Δ∞,

any 𝛼 > 1, and any Δ∞ satisfying 𝛼 < 2𝜆/Δ∞ + 1, we have

𝐷𝛼 (𝑠 + 𝑆𝑘𝑑 (𝜆, 𝜆) ∥ 𝑆𝑘𝑑 (𝜆, 𝜆)) ≤
1.09𝛼 + 0.91

2

· 𝑐
2𝜆

. (2)

The proof of the above theorem can be found in Appendix C.1

of the technical report version [7]. Next, we highlight the contri-

butions of our theoretical results. First, according to Theorem 3,

the privacy guarantee provided by a symmetric Skellam noise of

variance 2𝜆 is comparable (i.e., within a constant factor) with that

of adding continuous Gaussian noise of the same variance, which

is
𝛼 ·𝑠2
2·2𝜆 [40]. Further, as Eq. (1) only involves the quadratic term,

the one-dimensional privacy analysis can be easily extended to the

multi-dimensional setting by replacing the quadratic term with the

squared L2 norm, as in Theorem 4.

Meanwhile, since additive Skellam noise preserves RDP, by Lem-

mata 1 and 2, it allows the tight privacy accounting of Skellam

noises in applications involving composition and subsampling (e.g.,

FL), which is elaborated further in Section 4. Note that although

our analysis restricts the value of Δ∞ to Δ∞ < 2𝜆/(𝛼 − 1), this con-
straint only affects the utility of the Skellam noise, not its privacy

guarantees. This is because the constraint can be easily enforced by

standard L∞ clipping. In addition, in the federated learning setting,

𝜆 is usually much larger than the optimal 𝛼 (order of RDP) due

to the fact that a large number of participants contribute to the

overall DP noise, and the optimal 𝛼 is often relatively small (e.g.

less than 10 in our experiments). Hence, the above constraint leads

to a sufficiently large range for L∞ clipping without causing much

utility degradation.

A notable difference between our theoretical result presented in

Theorem 4 and the analysis of Skellam noise in [3] is that our result

is “cleaner” in the sense that Eq. (2) only involves the L2 norm

(similar to the case of continuous Gaussian noise [40]), whereas the

analysis in [3] also involves the L1 norm of vector 𝑠 . In general, the

presence of L1 sensitivity may lead to an excessive amount of noise

for high dimensional data, as the L1 sensitivity can be

√
𝑑 times

larger than the L2 sensitivity, limiting the applicability of Skellam

noises in such applications. Further, the clean bound without the

L1 norm term may also significantly simplify the design of proto-

cols and mechanisms built on top of additive Skellam noises, e.g.,

algorithms 1SMM and dSMM presented earlier. To avoid the L1

norm term, we do not use known properties of Rényi divergence,

and instead attack the problem directly using basic mathematical

tools, which is a novel proving technique of independent interest

(presented in detail in Appendix C.1 in the technical report ver-

sion [7]). In particular, this proving technique leads to long and

heavy formulae at the beginning, and yet within a few steps, most

terms are canceled out, resulting in a clean bound.

Finally, we mention that there exists an exact sampler for the

Skellam distribution, described Appendix A of the technical report

version [7]). As a result, adding Skellam noise strictly preserves

differential privacy. On the contrary, we are not aware of an exact

sampler for the continuous Gaussian distribution. Consequently, the

random noise sampled with an inexact sampler only approximately

follows the Gaussian distribution; strictly speaking, injecting such

noise may violate differential privacy, which is yet another moti-

vation for employing our proposed method that injects Skellam

noise.

3.4 Theoretical Analysis of Skellam Mixture
Mechanism

We present the theoretical analysis of the proposed Skellam mix-

ture mechanism (SMM). The proofs are deferred to Appendix C in

the technical report version [7]. In terms of privacy, we have the

following theorem for Algorithm 1.

Theorem 5. Suppose that each participant’s data point 𝑥𝑖 satisfies

|𝑥𝑖 |2 + (|𝑥𝑖 | − ⌊|𝑥𝑖 |⌋) − (|𝑥𝑖 | − ⌊|𝑥𝑖 |⌋)2 ≤ 𝑐

and ⌈|𝑥𝑖 |⌉ ≤ Δ∞. Then, whenever 𝛼 > 1 and Δ∞ satisfies

𝛼 <
2𝑛𝜆

Δ∞
+ 1, and (10.9𝛼2 − 1.8𝛼 − 9.1) < 4𝑛𝜆

Δ2

∞
, (3)

Algorithm 1 with noise parameter 𝜆 satisfies (𝛼, 𝜏)-RDP with 𝜏 =
1.2𝛼+1

2
· 𝑐
2𝑛𝜆

.



We extend Theorem 5 to the multi-dimensional setting using

Lemma 1.

Corollary 1. Suppose that each participant’s data point 𝑥𝑖 is
𝑑-dimensional and satisfies

𝑑∑︁
𝑗=1

(
|𝑥𝑖, 𝑗 |2 +

(
|𝑥𝑖, 𝑗 | − ⌊|𝑥𝑖, 𝑗 |⌋

)
−

(
|𝑥𝑖, 𝑗 | − ⌊|𝑥𝑖, 𝑗 |⌋

)
2

)
≤ 𝑐, (4)

and ∥⌈|𝑥𝑖 |⌉ ∥∞ ≤ Δ∞. Then, whenever 𝛼 > 1 and Δ∞ satisfies Eq. (3),
Algorithm 2 with noise parameter 𝜆 satisfies (𝛼, 𝜏)-RDP with 𝜏 =
1.2𝛼+1

2
· 𝑐
2𝑛𝜆

.

In practice, the constraints in Eq. (4) and ∥⌈|𝑥𝑖 |⌉ ∥∞ ≤ Δ∞ can

be enforced by clipping, as we explain in Section 4. The maximum

value of the L∞ clipping bound Δ∞ is computed from Eq. (3). Next,

we present the utility guarantee incurred by Algorithm 2, which

follows from Corollary 1.

Corollary 2. Suppose that each participant’s data point 𝑥𝑖 is
𝑑-dimensional and satisfies Eq. (4), ∥⌈|𝑥𝑖 |⌉ ∥∞ ≤ Δ∞, 𝛼 > 1, and Δ∞
satisfies Eq. (3). Then, when satisfying (𝛼, 𝜏)-RDP, the error incurred
by Algorithm 1 is

𝐸𝑟𝑟M =
1.2𝛼 + 1

2

·𝑑𝑐
𝜏
+

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

(
|𝑥𝑖, 𝑗 | − ⌊|𝑥𝑖, 𝑗 |⌋ −

(
|𝑥𝑖, 𝑗 | − ⌊|𝑥𝑖, 𝑗 |⌋

)
2

)
.

We briefly comment on Corollary 2. We define 𝑝𝑖, 𝑗 := |𝑥𝑖, 𝑗 | −
⌊|𝑥𝑖, 𝑗 |⌋, which is the probability of increasing the absolute value

|𝑥𝑖, 𝑗 | by 1 for the 𝑖-th participant. Then, the overall error incurred

by dSMM is:

𝐸𝑟𝑟M =
(1.2𝛼 + 1) · 𝑑𝑐

2𝜏
+

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

(𝑝𝑖, 𝑗 − 𝑝2𝑖, 𝑗 ) .

The first term of 𝐸𝑟𝑟M can be viewed as the error due to enforcing

differential privacy. Note that the leading multiplier (1.2𝛼 + 1)/2 is
only slightly larger (i.e., by a constant factor) than of the approach

injecting continuous Gaussian noise, which is 𝛼/2. The second error
term is the overall variance of all the Bernoulli trials performed on

the participant side. This error term can be seen as the integer ap-

proximation error, which exists even without enforcing differential

privacy.

4 FEDERATE LEARNINGWITH SKELLAM
MIXTURE MECHANISM

In this section, we apply our Skellam mixture mechanism (SMM) to

enforce DP on federated learning with distributed SGD. We assume

that the participants have access to a black-box secure aggregation

protocol, following the convention in [4, 31]. The training process

is outlined in Algorithm 3. In each iteration, the server releases the

current model parameters to all participants (Line 2 in Algorithm 3).

Then, a random subset of participants, whose identities are not

known to the server, is selected (Line 3). Each participant in the

selected subset then computes the gradients based on the current

model weights and her own data (Line 5), and invoke Algorithm 4

for gradient perturbation (Line 6). After that, the secure aggregation

protocol computes the sum of the perturbed gradients (Line 7) of

the randomly selected participants. Finally, the server retrieves the

perturbed gradient sum and updates the model (Lines 8 and 9). We

Algorithm 3: Federated learning with Skellam mixture

mechanism

Input: Private dataset of training records 𝑋 = (𝑥1, . . . , 𝑥𝑛) ; initial
model parameters 𝜃 ; secure aggregation protocol A.

Parameters: Sampling parameter 𝑞; number of iterations𝑇 ; noise

parameter 𝜆; scale parameter 𝛾 ; clipping thresholds 𝑐

and Δ∞; modulus𝑚 ∈ N.
1 for ℎ ∈ 1 . . .𝑇 do
2 The server shares the current model parameters 𝜃 to all

participants.

3 𝐵
𝑢.𝑎.𝑟←− {1, 2, . . . , 𝑛}. // sample a subset of participants

uniformly at random from all participants using Poisson

sampling with rate 𝑞

4 for 𝑖 ∈ 𝐵 do
5 𝑔𝑖 ← ∇𝜃 (𝑟𝑖 ) . // gradient computation

6 𝑧𝑖 ← Algorithm 4(𝑔𝑖 ) . // SMM on the participant

side

7 𝑧 ← A({𝑧𝑖 }𝑖∈𝐵 ) . // secure aggregation

8 𝑔∗ ← Algorithm 6(𝑧) . // gradient sum retrieval by the server

9 𝜃 ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝜃,𝑔∗) . // model update based on the

approximate gradient sum

Output: 𝜃 model parameters learnt on 𝑋 .

Algorithm 4: participant procedure for perturbing gradi-
ents

Input: Private gradient 𝑔𝑖 ∈ R𝑑
Parameters: Noise parameter 𝜆; scale parameter 𝛾 ; clipping

thresholds 𝑐 and Δ∞; modulus𝑚 ∈ N.
Public randomness: Uniformly random sign vector

𝜉 ∈ {−1, +1}𝑑 .
1 𝑔𝑖 ← 𝐻𝑑𝐷𝜉𝑔𝑖 . // random rotation, where

𝐻 ∈ {−1/
√
𝑑, +1/

√
𝑑 }𝑑×𝑑 is a Walsh-Hadamard matrix satisfying

𝐻𝑇𝐻 = 𝐼 and 𝐷𝜉 ∈ {−1, 0, +1}𝑑×𝑑 is a diagonal matrix with 𝜉 on

the diagonal

2 𝑔𝑖 ← 𝛾 · 𝑔𝑖 . // scaling

3 𝑔𝑖 ← 𝑐𝑙𝑖𝑝 (𝑔𝑖 ) . // clip 𝑔𝑖 as in Algorithm 5

4 for 𝑗 ∈ 1 . . . 𝑑 do
5 𝑝𝑖,𝑗 = 𝑔𝑖,𝑗 − ⌊𝑔𝑖,𝑗 ⌋.
6 Sample 𝑦𝑖,𝑗 from a Bernoulli trial with success probability 𝑝𝑖,𝑘 .

7 if 𝑦𝑖,𝑗 = 0 then
8 𝑔∗

𝑖,𝑗
← ⌊𝑔𝑖,𝑗 ⌋ + 𝑆𝑘 (𝜆, 𝜆) .

9 else
10 𝑔∗

𝑖,𝑗
← ⌊𝑔𝑖,𝑗 ⌋ + 1 + 𝑆𝑘 (𝜆, 𝜆) .

11 𝑧𝑖,𝑗 ← 𝑔∗
𝑖,𝑗

mod 𝑚.

Output: 𝑧𝑖 ∈ Z𝑑𝑚 for the secure aggregation protocol.

omit additional details on the updating process (e.g., learning rate
schedule, weight decay) as they do not affect the general framework

or the privacy guarantees. After repeating the above process for 𝑇

iterations, the training terminates, and the server obtains the final

model weights 𝜃 .

In what follows, we explain the participant procedure for per-

turbing gradients (Algorithm 4) and the server procedure for re-

constructing the perturbed gradient sum (Algorithm 6). Each par-

ticipant 𝑖 first randomly rotates the private vector using a Walsh-

Hadamard matrix [29] and a public random sign vector 𝜉 shared



Algorithm 5: participant procedure for clipping gradients

Input: Private gradient 𝑔𝑖 ∈ R𝑑
Parameters: Clipping thresholds 𝑐 and Δ∞.

1 𝑣𝑖 ← 0. // initialize the helper vector for clipping.
2 for 𝑗 ∈ 1..𝑑 do
3 𝑣𝑖,𝑗 =

𝑔𝑖,𝑗

|𝑔𝑖,𝑗 | ·
(
|𝑔𝑖,𝑗 |2 + |𝑔𝑖,𝑗 | − ⌊ |𝑔𝑖,𝑗 | ⌋ + ( |𝑔𝑖,𝑗 | − ⌊ |𝑔𝑖,𝑗 | ⌋)2

)
.

// map 𝑔𝑖 to 𝑣𝑖 .

4 𝑣𝑖 ← min(1, 𝑐
∥𝑣𝑖 ∥1 ) · 𝑣𝑖 . // L1 clip and re-scale

5 for 𝑗 ∈ 1 . . . 𝑑 do
6 𝑔′

𝑖,𝑗
= ⌊

√︁
|𝑣𝑖,𝑘 | ⌋. // compute the integer part

7 𝑝′
𝑖,𝑗

=
𝑦

2𝑔′
𝑖,𝑗
+1 // compute the fraction part

8 𝑔𝑖,𝑗 ←
𝑣𝑖,𝑗

|𝑣𝑖,𝑗 | · (𝑔
′
𝑖,𝑗
+ 𝑝′

𝑖,𝑗
) . // compose two parts

9 for 𝑗 ∈ 1 . . . 𝑑 do
10 𝑔𝑖,𝑗 ←

𝑔𝑖,𝑗

|𝑔𝑖,𝑗 | · min(Δ∞, |𝑔𝑖,𝑗 |) . // L∞ clip.

Output: 𝑔𝑖 the clipped gradient.

Algorithm 6: Server procedure of estimating gradient sum

Input: Private vector 𝑧 = (∑𝑖∈𝐵 𝑧𝑖 mod 𝑚) ∈ Z𝑑𝑚 via secure

aggreagtion

Parameters: Noise parameter 𝜆; scale parameter 𝛾 ; clipping

thresholds 𝑐 and Δ∞; modulus𝑚 ∈ N.
Public randomness: Uniformly random sign vector

𝜉 ∈ {−1, +1}𝑑 .
1 Map 𝑧 ∈ Z𝑑𝑚 to 𝑧′ ∈ [−𝑚/2,𝑚/2]𝑑 ∩ Z𝑑 .
2 𝑔∗ ← 1

𝛾
· 𝐷𝜉𝐻

𝑇
𝑑
𝑧′.

Output: 𝑔∗ the estimated gradient sum.

among all participants and the server (Line 1 in Algorithm 4), which

is also used in previous solutions [3, 4, 31]. Each dimension of the re-

sulting gradient follows a Sub-Gaussian distribution with variance

𝑂 (∥𝑔𝑖 ∥2
2
/𝑑), where 𝑔𝑖 is the participant’s private gradient value.

Specifically, each dimension is concentrated around 0 when 𝑑 is

large, e.g., tens of thousand for neural networks. Essentially, this

operation flattens the gradient and limits the probability of over-

flowing when computing the sum of gradients. We refer the reader

to [4, 31] for detailed discussions.

After that, the participant scales the rotated vector and clips the

scaled vector (Lines 2 and 3). We will explain the clipping procedure

shortly (outlined in Algorithm 5). Then, for each 𝑘-th coordinate

in the clipped vector, the participant samples one bit from the

Bernoulli distribution of success probability 𝑔𝑖,𝑘 − ⌊𝑔𝑖,𝑘 ⌋, where
𝑔𝑖,𝑘 is the 𝑘-th element of the rotated vector 𝑔𝑖 (Lines 5 and 6 in

Algorithm 4). If the Bernoulli trial fails, the participant samples

a noise following the Skellam distribution 𝑆𝑘 (𝜆, 𝜆) and shift the

outcome to ⌊𝑔𝑖,𝑘 ⌋ (Lines 7 and 8); otherwise, the participant shifts

the same outcome to ⌈𝑔𝑖,𝑘 ⌉ (Lines 9 and 10). Finally, the participant
applies element-wise modulo operation on the noisy vector (Line

11). Essentially, this step restricts the output from the participant

to Z𝑑𝑚 , and enforces a log
2
𝑚-bit communication constraint per

dimension, both of which are required by the secure aggregation

protocol.

Next, the participants collectively compute the sum of their out-

put noisy vectors through a secure aggregation protocol, and reveal

the sum (∑𝑛
𝑖=1 𝑧𝑖 mod 𝑚) to the server. As we have mentioned,

parameter𝑚 can be seen as the per dimension communication for

secure aggregation protocol. Although a larger𝑚 helps preserve

information on the noisy gradients, such an𝑚 increases the com-

munication cost, slowing down the aggregation process (especially

with a communication-intensive secure aggregation protocol) as

well as the model training overall. The problem is exacerbated when

the participant is a mobile device with metered Internet connection.

Hence, in practice it is often preferable to set a relatively small𝑚,

e.g., 2
8
in our experiments, which is equivalent to a communication

constraint of one-byte per dimension.

After obtaining the sum (∑𝑛
𝑖=1 𝑧𝑖 mod 𝑚), the server first

unwraps the modulo operation (Line 1 in Algorithm 6). In

particular, values in {𝑚/2,𝑚/2 + 1, . . . ,𝑚 − 1} are mapped

back to {−𝑚/2,−𝑚/2 + 1, . . . ,−1}, respectively; and values in

{0, 1, . . . ,𝑚/2 − 1} remain unchanged. This is because in Line 11

in Algorithm 4, values in {−𝑚/2,−𝑚/2 + 1, . . . ,−1} are mapped to

{𝑚/2,𝑚/2+1, . . . ,𝑚−1}, respectively; and values in {0, 1, . . . ,𝑚/2−
1} are mapped to themselves. We refer the reader to [31] for a

detailed discussion on this issue. Then, the server reverses the ro-

tation and scaling performed on the participant side (Line 2 in

Algorithm 6), obtaining an unbiased estimate for the gradient sum.

Next, we explain the clipping procedure outlined in Algorithm 5.

Recall that clipping is a standard step introduced in DPSGD [2]

to bound the sensitivity of deep learning with DP. The clipping

procedure in this work is slightly different from that in DPSGD,
which clips the L2 norm of the gradient. The difference is due

to the different privacy guarantee of SMM (see Theorem 5 and

Corollary 1). Recall that the privacy guarantee of 𝑑-dimensional

SMM relies on the following property of the input data 𝑔𝑖 :

⌈|𝑔𝑖 |⌉ ≤ Δ∞, and

𝑑∑︁
𝑗=1

(
|𝑔𝑖, 𝑗 |2 +

(
|𝑔𝑖, 𝑗 | − ⌊|𝑔𝑖, 𝑗 |⌋

)
−

(
|𝑔𝑖, 𝑗 | − ⌊|𝑔𝑖, 𝑗 |⌋

)
2

)
≤ 𝑐.

Accordingly, this requires a different clipping procedure. The first

property is easy to enforce. For example, for Δ∞ = 1 and 𝑥𝑖 =

−1.9, we simply increase the 𝑥𝑖 to −1. The second property is more

complicated to enforce, as we explained next. For each participant,

we first construct a helper vector 𝑣𝑖 . In particular, each dimension

of 𝑣𝑖 is computed as follows:

𝑣𝑖, 𝑗 =
𝑔𝑖, 𝑗

|𝑔𝑖, 𝑗 |
·
(
|𝑔𝑖, 𝑗 |2 + |𝑔𝑖, 𝑗 | − ⌊|𝑔𝑖, 𝑗 |⌋ + (|𝑔𝑖, 𝑗 | − ⌊|𝑔𝑖, 𝑗 |⌋)2

)
,

for 𝑗 = 1 . . . , 𝑑 (Line 3 in Algorithm 5). For completeness, we define

0

0
= 1. Next, we clip vector 𝑣𝑖 based on its L1 norm in the standard

way (Line 4 in Algorithm 5). Finally, we re-map the clipped vector

to its original form (Lines 5 to 8 in Algorithm 5) and clip each

dimension of the vector by Δ∞ (Line 10 in Algorithm 5).

4.1 Privacy Analysis
In this section, we analyze the privacy guarantee of Algorithm 3.

Observe that each iteration of Algorithm 3 can be seen as running

the Skellam mixture mechanism on a random subset of gradients.

This is because none of the model sharing (Line 2 in Algorithm 3),

gradient sum reconstruction (Line 8 in Algorithm 3), or model up-

dating (Line 9 in Algorithm 3) procedures incurs any additional

privacy loss, as the updated model can be reconstructed by the



constructed perturbed gradient sum, which, in turn, can be com-

puted from the perturbed gradient sum released from the secure

aggregation protocol. In addition, since the identities of the ran-

dom subset of participants are not known to the server, the privacy

guarantee benefits from amplification by subsampling. (We refer

the reader to [31] for a detailed discussion on this issue.) Hence,

the privacy guarantee of Algorithm 3 follows by applying the com-

position (Lemma 1) and the amplification (Lemma 2) results to the

privacy analysis of SMM (Corollary 1). A formal statement of the

privacy guarantees of Algorithm 3 is as follows.

Theorem 6 (Privacy guarantee of Algorithm 3). For sam-
pling parameter 𝑞; sampled subset 𝐵; number of iterations 𝑇 ; noise
parameter 𝜆; and clipping thresholds 𝑐 and Δ∞, for any 𝛼 > 1 and
Δ∞ satisfies

𝛼 <
2|𝐵 |𝜆
Δ∞

+ 1, and (10.9𝛼2 − 1.8𝛼 − 9.1) < 4|𝐵 |𝜆
Δ2

∞
, (5)

Algorithm 3 satisfies (𝛼, 𝜏)-RDP with

𝜏 = 𝑇 · 1

𝛼 − 1 ·

log

(
(1 − 𝑞)𝛼−1 (𝛼𝑞 − 𝑞 − 1) +

𝛼∑︁
𝑙=2

(
𝛼

𝑙

)
(1 − 𝑞)𝛼−𝑙𝑞𝑙𝑒 (𝑙−1)𝜏 (𝑙)

)
,

where 𝜏 (𝑙) is defined as 𝜏 (𝑙) := 1.2𝑙+1
2
· 𝑐
2 |𝐵 |𝜆 , for 𝑙 = 2, . . . , 𝛼 .

5 RELATED WORK
Asmentioned in Section 1, existing work on federated learning with

differential privacy has mostly considered the non-MPC settings

where real-value noise can be used. To our knowledge, there are

only four prior studies [3, 4, 31, 34] on using integer noise to achieve

DP in federated learning. In what follows, we revisit the solutions

in [3, 4, 31, 34], and compare them with our SMM.

cpSGD [4]. cpSGD lets each participant inject binomial noise

(i.e., the sum of multiple binary values drawn from independent

Bernoulli trials) to her discretized gradients to satisfy DP. Similar

to Gaussian noise in the continuous domain, binomial noise can

also be easily aggregated, as the sum of multiple i.i.d. binomial

values also follows a binomial distribution. This property simplifies

the privacy reasoning for cpSGD, as it allows us to focus on the

aggregated binomial noise in the sum of all participants’ gradients,

without the need to analyze each participant’s binomial noise sepa-

rately. However, the privacy analysis of cpSGD in [4] is based on

(𝜖, 𝛿)-DP instead of RDP, which leads to relatively loose privacy

bounds for federated learning, since it is difficult to derive the exact

(𝜖, 𝛿)-DP guarantee of an iterative algorithm with subsampling

(e.g., SGD).

Another limitation of cpSGD is that it assumes the input to to be

integer-valued. For any non-integer input 𝑥 , the method requires

a stochastic rounding [4] of 𝑥 , which often leads to a considerable

increase in sensitivity. For example, if 𝑥 = {0.01, 0.01, . . . , 0.01} ∈
R𝑑 , then each dimension of 𝑥 is rounded 1with 0.01 probability, and

to 0 with 0.99 probability. This approach ensures that each rounded

value’s expectation equals the original value, but the rounded values

could be significantly larger than the original ones. In particular, in

the worst case when each dimension of 𝑥 is rounded to 1, the L2

norm of 𝑥 is increased from 0.01 ·
√
𝑑 to

√
𝑑 after the rounding. In

other words, even if each participant’s gradient vector has an L2

norm atmost 0.01·
√
𝑑 , the sum of all participant’s rounded gradients

could have an L2 sensitivity of

√
𝑑 . This significantly increases the

amount of noise required by cpSGD to achieve differential privacy,

resulting in an unfavorable trade-off between privacy and utility.

Distributed Discrete Gaussian (DDG) mechanism [31]. To mit-

igate the limitations of cpSGD, Kairouz et al. [31] propose DDG, a
method that utilizes discrete Gaussian distributions [12] instead of

binomial distributions for noise generation. In particular, a discrete

Gaussian distribution has a similar PDF to a continuous Gaussian

distribution, but is defined over the integer domain. The main ad-

vantage of using discrete Gaussian noise is that it can achieve RDP,

which makes it much easier to derive a tight privacy bound of DDG
for iterative algorithms with subsampling.

Similar to cpSGD, DDG also assumes that the inputs are integer-

valued, and, hence, requires stochastic rounding of non-integers.

To alleviate the sensitivity increase incurred by rounding, DDG
applies a conditional rounding approach as follows. First, given an

input 𝑥 ∈ R𝑑 with bounded L2 norm Δ2 (otherwise DDG clips

the input) and the scale parameter 𝛾 , DDG scales the input 𝑥 and

obtains 𝛾𝑥 . After that, DDG performs a stochastic rounding on 𝛾𝑥 .

If the rounded version of the scaled input has an L2 norm larger

than √︃
𝛾2Δ2

2
+ 𝑑/4 +

√︁
2 log(1/𝛽) (𝛾Δ2 +

√
𝑑/2), (6)

for some fixed 𝛽 (explained soon), then DDG discards it and re-

generates another stochastically rounded version. The procedure is

repeated until the above requirement is met. The hyperparameter

𝛽 ranging from 0 to 1 controls the trade-off between bias and sensi-

tivity increase in the conditional rounding process. To see this, note

that the expectation of the rounded value is generally not equal to

the original value (since rounded values failing the above condition

in Eq. (6) are rejected), which adversely affects the accuracy of the

output of DDG. A smaller 𝛽 leads to a lower bias but higher sensi-

tivity increase, which, in turn, leads to a higher amount of noise

needed to satisfy DP, and vice versa. This conditional rounding

approach ensures that the rounding operation does not incur a

significant increase of the L2 sensitivity, but the increase is still

𝑂 (
√
𝑑). In addition, the conditional rounding operation introduces

a hyperparameter 𝛽 , which is difficult to tune under DP. The au-

thors of [31] recommend fixing 𝛽 to 𝑒−0.5, which is done in our

experiments.

Skellam Mechanism [3]. In Ref. [3], Agarwal et al. propose to
sample noise from a Skellam distribution instead of a discrete Gauss-

ian distribution. Since the sum of independent Skellam noises still

follows Skellam distribution (see Section 2.1), the privacy reasoning

of distributed Skellam noise is straightforward, unlike DDG. In
particular, the paper shows that adding Skellam-distributed noise

to integers also achieves RDP. However, for non-integer inputs, the

Skellam mechanism in [3] still requires the conditional rounding

approach introduced in [31]. Consequently, its accuracy also suf-

fers from the sensitivity increase, as well as the bias introduced by

conditional rounding.



Comparisons with SMM. Compared to the aforementioned meth-

ods, one major advantage of SMM is that it does not rely on an

additional stochastic rounding [4] or conditional rounding [3, 31]

step to handle non-integer inputs. Instead, SMM directly takes any

𝑥 ∈ R𝑑 as input, and outputs a noisy version 𝑥∗ of 𝑥 whose expecta-

tion equals 𝑥 , without incurring a significant increase in sensitivity.

Accordingly, SMM injects a smaller amount of noise while achiev-

ing the same level of privacy as its competitors. As a consequence,

SMM is able to obtain much more accurate results than cpSGD [4],

DDG [31], and the Skellam mechanism [3], especially in settings

where communication is constrained to low bitwidths. In particular,

in such situations, the quantization granularity is set to a coarse

level (i.e., a small scale parameter𝛾 ) to avoid overflow. Such a coarse

quantization granularity leads to a relatively large sensitivity in-

crease compared to the quantized gradients. For this reason, the

perturbation noise in cpSGD, DDG, and Skellam due to rounding is

rather high in such low-bitwidth settings, resulting in much lower

model utility than SMM. We validate this claim with experiments

in the next section.

In addition, compared with DPSGD [2], SMM involves only one

additional hyper parameter: the scale parameter 𝛾 , which controls

the trade-off between communication cost and utility. Note that

this trade-off does not exist in DPSGD as it is a solution for the

centralized setting. Once 𝛾 is determined, we can compute the

clipping threshold 𝑐 for SMM as 𝑐 = 𝛾2 · Δ2

2
for some constant

Δ2, which corresponds to setting the L2 clipping norm to Δ2 in

DPSGD [2]. In addition, the L∞ clipping bound Δ∞ for SMM is

computed from Eq. (5). In contrast, both DDG [31] and the Skellam

mechanism [3] include an additional hyperparameter 𝛽 . In these

algorithms, parameter 𝛽 controls the trade-off between bias and

sensitivity in their conditional rounding process, as mentioned

earlier. A poor choice of 𝛽 may adversely impact the performance

of these algorithms; meanwhile, hyperparameter tuning is rather

challenging under the differential privacy requirement.

We also note that our theoretical analysis of SMM is substantially

different from that in [3], due to the inherent differences between

the Skellam mixture distribution used in SMM and the Skellam

distribution used in [3]. In addition, even for the special case of in-

teger inputs, the privacy guarantee of SMM (see Theorems 3 and 4)

differs from that of the Skellam mechanism in [3], because we use

different proof techniques from those in [3]. While the techniques

used in [3] is also non-trivial, our result for integer inputs is cleaner,

and is of independent interest, as we have mentioned in Section 3.3.

6 EXPERIMENTS
We evaluate the performance of SMM on the distributed sum es-

timation problem and two basic machine learning tasks. For sim-

plicity, all experiments are done using the approximate samplers

for Discrete Gaussian and Skellam from the TensorFlow libraries,

which are based on floating point approximations. Compared with

exact samplers, approximate samplers are faster. We include a de-

tailed discussion on this issue in Appendix A in the technical report

version [7].

6.1 Distributed Sum Estimation
As a simple application, we first evaluate the performance of so-

lution SMM on the distributed sum estimation problem described

in Section 3.1, given a private 𝑑-dimensional input dataset. Fol-

lowing the experiment setting in [31], we generate a synthetic

dataset containing 𝑛 = 100 data points uniformly sampled from

a 𝑑-dimensional L2 sphere. We set the dimension to 𝑑 = 65536,

and the radius to 𝑟 = 1 (namely, the L2 sensitivity of input is 1).

The participants release their noisy sum under distributed DP. We

report the mean squared error (mse) over all dimensions. Our eval-

uation uses the (𝜖, 𝛿)-DP (Definition 2) definition instead of RDP

(Definition 3, since (𝜖, 𝛿)-DP is a classic definition of differential

privacy, and a competitor cpSGD supports the former but not the

latter. We fix 𝛿 to 10
−5
, and vary the privacy parameter 𝜖 from

{1, 2, 3, 4, 5}. For DDG, Skellam, and SMM, we first compute the

privacy guarantee using RDP, and then convert the guarantee to

(𝜖, 𝛿)-DP using Lemma 3 (the optimal RDP order is chosen from

integers from 2 to 100).

For DDG, Skellam, cpSGD, and SMM, we vary the commu-

nication bitwidth per dimension from {10, 12, 14, 16, 18}. Corre-
spondingly, 𝑚 varies from {210, 212, 214, 216, 218} (see line 11 in

Algorithm 4). For 𝑚 equals to 2
10, 212, 214, 216, and 2

18
, we vary

the scale parameter 𝛾 in {4, 8}, {16, 32}, {64, 128}, {256, 512}, and
{1024, 2048}, respectively (see line 2 in Algorithm 4). For SMM,

the clipping threshold 𝑐 is set to 𝛾2𝑟2 with 𝑟 = 1. Additionally,

we compute the L∞ clipping bound for SMM using Eq. (3), based

on the optimal RDP order. For Skellam and DDG, the L2 clipping

bound is set to Δ2 =

√︃
𝛾2𝑟2 + 𝑑/4 +

√︁
2 log(1/𝛽) (𝛾𝑟 +

√
𝑑/2), with

𝑟 = 1, 𝑑 = 65536, and 𝛽 = exp(−0.5), as suggested in [31]. In

terms of L1 clipping bound for Skellam and DDG, we have that

Δ1 ≤ min

(√
𝑑 · Δ2,Δ

2

2

)
, following [31]. Note that we do not per-

form an actual L1 clipping step for the rounded gradients, as the

above relationship between L2 and L1 norms automatically holds

for all integer-valued vectors. Similarly, for cpSGD, the L1 norm is

bounded by

√
𝑑 times theL2 norm, following its original implemen-

tation. We also include continuous Gaussian, which is a solution

for the centralized DP setting, as a strong baseline.

The results are shown in Figure 1. When the communication

bitwidth is limited (i.e., when𝑚 = 2
10, 212, 214), SMM significantly

outperforms all its competitors, as demonstrated in Figures 1 (a),

(b), (c), (f), (g), and (h). When𝑚 = 2
16

and 𝛾 = 256, SMM achieves

comparable performance asDDG and Skellam, as shown in Figure 1

(d). When both𝑚 and 𝛾 are large, SMM performs slightly worse

than DDG and Skellam, which obtain almost the same accuracy as

the strong baseline continuous Gaussian, as we see from Figures 1

(i), (e), and (j). Finally, Skellam and DDG has similar performance

under all settings, and cpSGD incurs rather high error (> 10
4
), and

falls outside the error range shown in the figures. Below, we briefly

explain the reasons for the above results.

As mentioned in Section 5, existing solutions for distributed

DP incur high sensitivity overhead due to stochastic rounding (in

cpSGD) or conditional rounding (in DDG and Skellam). To be more

specific, the sensitivity overhead is roughly 1 per dimension, which

is non-negligible compared to the scaled data, especially when the

data dimension is large (e.g., 𝑑 = 65536) and when the quantization



granularity is coarse (i.e., small 𝛾 ) under small bitwidths (i.e., small

𝑚). This sensitivity increase leads to stronger perturbations for

cpSGD, DDG, and Skellam, and explains why SMM performs the

best in settings with small bitwidths. As the bitwidth increases with

𝛾 , the above-mentioned sensitivity overhead becomes negligible

compared with the scaled data. As a result, Skellam and DDG yield

almost the same accuracy as continuous Gaussian. In the meantime,

SMM performs slightly worse than continuous Gaussian, DDG,
and Skellam. This is because SMM always incurs a slightly larger

error than continuous Gaussian, according to Corollary 2, where

there is an extra factor of 1.2 leading the error term of SMM.

6.2 Federated Learning
Next, we evaluate the performance of the proposed solution SMM
on FL with DP (Algorithm 3) on two classic benchmark datasets:

MNIST [35] and Fashion MNIST [53], which contain grayscale im-

ages of handwritten digits and clothing, respectively. Both datasets

represent 10-class classification tasks with 60, 000 training data

records. We regard each data record in the training data as a par-

ticipant. Our evaluation uses the (𝜖, 𝛿)-DP, as we have explained
earlier. We fix 𝛿 to 10

−5
, and vary the privacy parameter 𝜖 from

{1, 2, 3, 4, 5}. In particular, for cpSGD, we apply both linear com-

position and advanced composition [22] for privacy accounting

and choose the stronger guarantee between them. We have also

included the strong central-model DPSGD [2] as a baseline.

For both MNIST [35] and Fashion MNIST [53], we train a three-

layer neural network with fully connected layers and ReLu activa-

tion, following previous work [4]. We set the number of neurons

per layers to 80, resulting in a model with 𝑑 = 63, 610 weights. For

DDG, Skellam, cpSGD, and SMM, we vary the communication

constraint𝑚 from {26, 28, 210}, where𝑚 = 2
8
corresponds to one

byte per parameter. For each𝑚, we vary the scaling parameter 𝛾

in {𝑚/32,𝑚/16,𝑚/8,𝑚/4,𝑚/2,𝑚} (see line 2 in Algorithm 4). For

cpSGD, DDG, Skellam, and the centralized algorithm DPSGD, we
use the same L2 clipping norm of 1 for the original real-valued

gradients. For the scaled gradients in DDG and Skellam, we set L2

clipping bound to

√︃
𝛾2Δ2

2
+ 𝑑/4 +

√︁
2 log(1/𝛽) (𝛾Δ2 +

√
𝑑/2), with

Δ2 = 1, 𝑑 = 65536, and 𝛽 = exp(−0.5). For SMM, we set the clip-

ping threshold 𝑐 to 𝛾2Δ2

2
, with Δ2 = 1, similar to its competitors. In

terms of the L∞ clipping bound for SMM, we compute Δ∞ from

Eq. (3) using the optimal order of 𝛼 . We also vary batch size |𝐵 |
from {120, 240, 480, 960}. The model is trained for 4 epochs, i.e.,

when |𝐵 | equals to 120, 240, 480, and 960, we train the model for

2000, 1000, 500, and 250 rounds, respectively. For all experiments,

we use the Adam optimizer [33] with learning rate 𝜂 = 0.005. We do

not tune the hyper-parameters in favor of any particular solution

and omit additional experiments on hyper parameter tuning, e.g.,

model structure, learning rate, clipping norm, optimizer, training

epochs, etc. We remark that our approach is compatible with exist-

ing differentially private parameter tuning techniques [28, 36, 44],

which is an orthogonal topic to this paper. We report the average

test accuracy over 5 runs. The results are shown in Figures 2 and 3.

Overall, the results are consistent with the those for distributed

sum estimation, and lead to similar conclusions as before, i.e., SMM
has a clear performance advantage over its competitors with small

bitwidths, and the performance gap gradually closes as the bitwidth

increases.

Specifically, when𝑚 = 2
6
, SMM is the only method that achieves

meaningful accuracy under all settings of privacy parameter 𝜖 ,

batch size |𝐵 |, and scale ratio 𝛾 (see Figures 2(a), (b), and (c), and Fig-

ures 3(a), (b), and (c)). This is because the scale of the noise injected

in DDG, Skellam, and cpSGD is so large that it causes floating point

number overflow, destroying the utility of the resulting gradient

sum.

When𝑚 = 2
8
(i.e., one byte per parameter), SMM also achieves

significantly higher accuracy compared to its competitors. In par-

ticular, in Figures 2(d) and 3(d), we fix the scale parameter to 𝛾 = 64

and the batch size to |𝐵 | = 240. When 𝜖 = 1, DDG and Skellam
yield very low utility due to floating point number overflows, while

SMM achieves much higher utility that is close to that of DPSGD
(i.e., the gap is less than 10%). As 𝜖 increases (indicating weaker

privacy protection), the performance gap between SMM and its

competitors becomes less dramatic. This is because with a higher

𝜖 , the required noise scale for the competitors becomes smaller, to

the point that it no longer causes floating point number overflows.

Nevertheless, there remains a noticable performance gap, since

the noise scale of SMM is still significantly lower than that of its

competitors. In particular, when 𝜖 = 3, the accuracy improvement

of SMM over DDG and Skellam is around 6% and 10% for MNIST

and Fashion MNIST, respectively, while the accuracy gap between

SMM and the centralized baseline DPSGD is only around 3%.

The performance gap between SMM and the centralized DPSGD
algorithm exists, even when 𝜖 reaches as high as 5. Not that at this

point, the noise required to satisfy DP no longer dominates the total

amount of perturbations; instead, the relatively coarse quantization

granularity (i.e., caused by a small 𝛾 ) becomes a significant factor.

As we demonstrate shortly, this accuracy gap gradually closes with

a larger bitwidth and/or a large scale ratio 𝛾 .

In Figures 2(e) and 3(e), we fix the privacy parameter 𝜖 = 3

and the scale parameter 𝛾 = 64, and vary the batch size |𝐵 | from
{120, 240, 480, 960}. SMM is the only algorithm that consistently

achieves comparable accuracy with DPSGD under all settings of

|𝐵 |. In particular, when |𝐵 | = 960, the accuracy improvement of

SMM overDDG and Skellam is around 30% and 20% for MNIST and

Fashion MNIST, respectively. Finally, we fix the privacy parameter

and the batch size, and vary the scale parameter 𝛾 in Figures 2(f)

and 3(f). The results show consistent accuracy improvement with

varying 𝛾 . We also note that as 𝛾 increases from 8 to 256, the accu-

racy of SMM first increases then decreases. On the one hand, as

𝛾 increases, the gradient weights becomes more fine-grained and

contains more information, leading to higher accuracy; on the other

hand, as 𝛾 increases, a larger amount of noise is required to satisfy

DP. When 𝛾 = 256, the noisy gradient weights exceed the one-byte

communication constraint, causing utility degradation. The same

performance pattern can be observed for Skellam and DDG.
When the communication bitwidth is sufficiently large (e.g.,

when𝑚 = 2
10
), we observe that while DDG and Skellam achieve

almost the same accuracy as DPSGD, there is a small accuracy gap

between SMM and DPSGD. For example, as we see in Figures 2(g)

and 3(g), there is a 0.5 and 1 percent accuracy gap for MNIST

and Fashion MNIST between SMM and DPSGD for 𝜖 ≥ 2. In

addition, there are also noticeable accuracy gaps when |𝐵 | = 960



Continuous Gaussian SMM Skellam DDG cpSGD

1 2 3 4 5

10
0

10
2

10
4

𝜖

m
s
e

(a)𝑚 = 2
10, 𝛾 = 4.

1 2 3 4 5

10
0

10
2

10
4

𝜖
m
s
e

(b)𝑚 = 2
12, 𝛾 = 16.

1 2 3 4 5

10
0

10
1

10
2

𝜖

m
s
e

(c)𝑚 = 2
14, 𝛾 = 64.

1 2 3 4 5

10
0

10
1

10
2

𝜖

m
s
e

(d)𝑚 = 2
16, 𝛾 = 256.

1 2 3 4 5

10
0

10
1

10
2

𝜖

m
s
e

(e)𝑚 = 2
18, 𝛾 = 1024.

1 2 3 4 5

10
0

10
2

10
4

𝜖

m
s
e

(f)𝑚 = 2
10, 𝛾 = 8.

1 2 3 4 5

10
0

10
2

10
4

𝜖

m
s
e

(g)𝑚 = 2
12, 𝛾 = 32.

1 2 3 4 5

10
0

10
1

10
2

𝜖

m
s
e

(h)𝑚 = 2
14, 𝛾 = 128.

1 2 3 4 5

10
0

10
1

10
2

𝜖

m
s
e

(i)𝑚 = 2
16, 𝛾 = 512.

1 2 3 4 5

10
0

10
1

10
2

𝜖

m
s
e

(j)𝑚 = 2
18, 𝛾 = 2048.

Figure 1: Evaluations on synthetic data with varying privacy parameter 𝜖, scale parameter 𝛾 , and communication constraint𝑚.

DPSGD SMM Skellam DDG cpSGD

1 2 3 4 5

50

60

70

80

90

100

𝜖

t
e
s
t
a
c
c
u
r
a
c
y
%

(a)𝑚 = 2
6, 𝛾 = 16, |𝐵 | = 240. Varying 𝜖 .

120 240 480 960

50

60

70

80

90

100

|𝐵 |

t
e
s
t
a
c
c
u
r
a
c
y
%

(b)𝑚 = 2
6, 𝜖 = 3, 𝛾 = 16. Varying |𝐵 |.

2 4 8 16 32 64

50

60

70

80

90

100

𝛾
t
e
s
t
a
c
c
u
r
a
c
y
%

(c)𝑚 = 2
6, 𝜖 = 3, |𝐵 | = 240. Varying 𝛾 .

1 2 3 4 5

50

60

70

80

90

100

𝜖

t
e
s
t
a
c
c
u
r
a
c
y
%

(d)𝑚 = 2
8, 𝛾 = 64, |𝐵 | = 240. Varying 𝜖 .

120 240 480 960

50

60

70

80

90

100

|𝐵 |

t
e
s
t
a
c
c
u
r
a
c
y
%

(e)𝑚 = 2
8, 𝜖 = 3, 𝛾 = 64. Varying |𝐵 |.

8 16 32 64 128 256

50

60

70

80

90

100

𝛾

t
e
s
t
a
c
c
u
r
a
c
y
%

(f)𝑚 = 2
8, 𝜖 = 3, |𝐵 | = 240. Varying 𝛾 .

1 2 3 4 5

50

60

70

80

90

100

𝜖

t
e
s
t
a
c
c
u
r
a
c
y
%

(g)𝑚 = 2
10, 𝛾 = 256, |𝐵 | = 240. Varying 𝜖 .

120 240 480 960

50

60

70

80

90

100

|𝐵 |

t
e
s
t
a
c
c
u
r
a
c
y
%

(h)𝑚 = 2
10, 𝜖 = 3, 𝛾 = 256. Varying |𝐵 |.

32 64 128 256 512 1024

50

60

70

80

90

100

𝛾

t
e
s
t
a
c
c
u
r
a
c
y
%

(i)𝑚 = 2
10, 𝜖 = 3, |𝐵 | = 240. Varying 𝛾 .

Figure 2: Evaluations on MNIST with varying communication constraint𝑚, privacy parameter 𝜖, scale parameter 𝛾 , and batch
size |𝐵 |.



DPSGD SMM Skellam DDG cpSGD

1 2 3 4 5

40

50

60

70

80

90

𝜖

t
e
s
t
a
c
c
u
r
a
c
y
%

(a)𝑚 = 2
6, 𝛾 = 16, |𝐵 | = 240. Varying 𝜖 .

120 240 480 960

40

50

60

70

80

90

|𝐵 |

t
e
s
t
a
c
c
u
r
a
c
y
%

(b)𝑚 = 2
6, 𝜖 = 3, 𝛾 = 16. Varying |𝐵 |.

2 4 8 16 32 64

40

50

60

70

80

90

𝛾

t
e
s
t
a
c
c
u
r
a
c
y
%

(c)𝑚 = 2
6, 𝜖 = 3, |𝐵 | = 240. Varying 𝛾 .

1 2 3 4 5

40

50

60

70

80

90

𝜖

t
e
s
t
a
c
c
u
r
a
c
y
%

(d)𝑚 = 2
8, 𝛾 = 64, |𝐵 | = 240. Varying 𝜖 .

120 240 480 960

40

50

60

70

80

90

|𝐵 |

t
e
s
t
a
c
c
u
r
a
c
y
%

(e)𝑚 = 2
8, 𝜖 = 3, 𝛾 = 64. Varying |𝐵 |.

8 16 32 64 128 256

40

50

60

70

80

90

𝛾

t
e
s
t
a
c
c
u
r
a
c
y
%

(f)𝑚 = 2
8, 𝜖 = 3, |𝐵 | = 240. Varying 𝛾 .

1 2 3 4 5

40

50

60

70

80

90

𝜖

t
e
s
t
a
c
c
u
r
a
c
y
%

(g)𝑚 = 2
10, 𝛾 = 256, |𝐵 | = 240. Varying 𝜖 .

120 240 480 960

40

50

60

70

80

90

|𝐵 |

t
e
s
t
a
c
c
u
r
a
c
y
%

(h)𝑚 = 2
10, 𝜖 = 3, 𝛾 = 256. Varying |𝐵 |.

32 64 128 256 512 1024

40

50

60

70

80

90

𝛾

t
e
s
t
a
c
c
u
r
a
c
y
%

(i)𝑚 = 2
10, 𝜖 = 3, |𝐵 | = 240. Varying 𝛾 .

Figure 3: Evaluations on Fashion MNIST with varying communication constraint𝑚, privacy parameter 𝜖, scale parameter 𝛾 ,
and batch size |𝐵 |.

and when 𝛾 = 512 in Figures 2(h) and (i) and 3(h) and (i). Overall,

as the bitwidth increases, the performance increase of DDG and

Skellam is much more significant than SMM, whose performance is

relatively stable with different bitwidths. Lastly, under all settings,

the accuracy of cpSGD is rather low (< 20%), and falls outside the

accuracy range shown in the figures.

7 CONCLUSION
This paper presents the Skellammixture mechanism (SMM), a novel

solution for enforcing differential privacy onmachine learningmod-

els built through an MPC-based federated learning process using

distributed stochastic gradient descent. Compared to existing solu-

tions, SMM achieves composable and scalable privacy guarantee

without increasing the sensitivity of input. Extensive experiments,

performed on both a synthetic dataset and two classic benchmark

datasets, as well as various practical settings, demonstrate the con-

sistent and significant accuracy gains SMM over existing solutions

under restrictive communication constraints.

For future work, we plan to further reduce the constant factor in

the privacy analysis for SMM to improve model utility under the

same level of privacy protection. Another promising direction is

to open up the black box of the MPC protocol and perform careful

privacy analysis with considerations for the details of the MPC

protocol, which might help lower the noise level further, leading to

a more favorable privacy-utility trade-off for federated learning.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Education, Singa-

pore (Number MOE2018-T2-2-091), A*STAR, Singapore (Number

A19E3b0099), and Qatar National Research Fund Qatar Foundation

(Number NPRP11C-1229-170007). Any opinions, findings and con-

clusions or recommendations expressed in this material are those

of the authors and do not reflect the views of the funding agencies.



REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine

Learning. In OSDI. 265–283.
[2] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In

CCS. 308–318.
[3] Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The Skellam Mechanism for

Differentially Private Federated Learning. In NeurIPS. 5052–5064.
[4] Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, and H. Bren-

danMcMahan. 2018. CpSGD: Communication-Efficient andDifferentially-Private

Distributed SGD. In NeurIPS. 7575–7586.
[5] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain.

2018. Round-Optimal Secure Multiparty Computation with Honest Majority. In

CRYPTO. 395–424.
[6] Laforgia Andrea and Natalini Pierpaolo. 2010. Some inequalities for modified

Bessel functions. Journal of Inequalities and Applications (2010).
[7] Ergute Bao, Yizheng Zhu, Xiaokui Xiao, Yin Yang, Beng Chin Ooi, Benjamin

Hong Meng Tan, and Khin Mi Mi Aung. 2022. Skellam Mixture Mechanism:
a Novel Approach to Federated Learning with Differential Privacy (Technical re-
port). RetrievedMay 15, 2022 from https://drive.google.com/file/d/1k6HILAQC5_

mwjFflQ-VJazBuRfrDurfU/view?usp=sharing

[8] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, SigurdMeldgaard, and

Anat Paskin-Cherniavsky. 2014. Non-Interactive Secure Multiparty Computation.

In CRYPTO. 387–404.
[9] JamesHenry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, andMar-

iana Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic

Overhead. In CCS. 1253–1269.
[10] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical Secure Aggregation for Privacy-Preserving Machine Learning. In CCS.
1175–1191.

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. 2020. Language Models are Few-Shot Learners. In NeurIPS.
1877–1901.

[12] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. 2020. The Discrete

Gaussian for Differential Privacy. In NeurIPS.
[13] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. 2019.

The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural

Networks. In SEC. 267–284.
[14] David Chaum, Ivan Damgård, and Jeroen van de Graaf. 1987. Multiparty Com-

putations Ensuring Privacy of Each Party’s Input and Correctness of the Result.

In CRYPTO. Springer, 87–119.
[15] Albert Cheu, Adam D. Smith, Jonathan R. Ullman, David Zeber, and Maxim

Zhilyaev. 2019. Distributed Differential Privacy via Shuffling. In EUROCRYPT.
375–403.

[16] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Bryan Catanzaro, and

Andrew Y. Ng. 2013. Deep learning with COTS HPC systems. In ICML. 1337–
1345.

[17] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. 2015. Secure Multiparty
Computation and Secret Sharing. Cambridge University Press.

[18] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,

Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang,

and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In NeurIPS.
1232–1240.

[19] Luc Devroye. 1986. Non-Uniform Random Variate Generation. Springer. https:

//doi.org/10.1007/978-1-4613-8643-8

[20] Philippe Duchon and Romaric Duvignau. 2016. Preserving the Number of Cycles

of Length k in a Growing Uniform Permutation. Electron. J. Comb. 23 (2016),
P4.22.

[21] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In TCC. 265–284.
[22] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differ-

ential Privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.
[23] Cynthia Dwork, Adam D. Smith, Thomas Steinke, Jonathan R. Ullman, and Salil P.

Vadhan. 2015. Robust Traceability from Trace Amounts. In FOCS. 650–669.
[24] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Abhradeep Thakurta. 2019. Amplification by Shuffling: From Local

to Central Differential Privacy via Anonymity. In SODA. 2468–2479.

[25] Vitaly Feldman. 2020. Does Learning Require Memorization? A Short Tale about

a Long Tail. In STOC. 954–959.
[26] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. 2002. On 2-Round

Secure Multiparty Computation. In CRYPTO. 178–193.
[27] Slawomir Goryczka, Li Xiong, and Vaidy Sunderam. 2013. Secure Multiparty

Aggregation with Differential Privacy: A Comparative Study. In Joint EDBT/ICDT
2013 Workshops. 155–163.

[28] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.

2010. Differentially Private Combinatorial Optimization. In SODA. 1106–1125.
[29] A. Hedayat and W. D. Wallis. 1978. Hadamard Matrices and Their Applications.

The Annals of Statistics 6, 6 (1978), 1184 – 1238.

[30] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. 2010. Secure Multiparty Compu-

tation with Minimal Interaction. In CRYPTO. 577–594.
[31] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The Distributed Discrete

Gaussian Mechanism for Federated Learning with Secure Aggregation. In ICML.
5201–5212.

[32] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2022. Code for The Discrete Gaussian
for Differential Privacy. Retrieved May 15, 2022 from https://github.com/IBM/

discrete-gaussian-differential-privacy

[33] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR.
[34] Antti Koskela, Joonas Jälkö, Lukas Prediger, and Antti Honkela. 2021. Tight

Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled

Gaussian Mechanism Using FFT. In AISTATS. 3358–3366.
[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning

applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[36] Jingcheng Liu and Kunal Talwar. 2019. Private Selection from Private Candidates.

In STOC. 298–309.
[37] Ryan T. McDonald, Keith B. Hall, and Gideon Mann. 2010. Distributed Training

Strategies for the Structured Perceptron. In HLT-NAACL. 456–464.
[38] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In AISTATS. 1273–1282.
[39] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting Unintended Feature Leakage in Collaborative Learning. In S&P.
691–706.

[40] Ilya Mironov. 2017. Rényi Differential Privacy. In CSF. 263–275.
[41] Ilya Mironov, Kunal Talwar, and Li Zhang. 2019. Rényi Differential Privacy of

the Sampled Gaussian Mechanism. CoRR abs/1908.10530 (2019).

[42] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive Privacy

Analysis of Deep Learning: Stand-alone and Federated Learning under Passive

and Active White-box Inference Attacks. In S&P. 739–753.
[43] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT. 223–238.
[44] Nicolas Papernot and Thomas Steinke. 2021. Hyperparameter Tuning with Renyi

Differential Privacy. CoRR abs/2110.03620 (2021).

[45] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro. 2018. Knock

Knock, Who’s There? Membership Inference on Aggregate Location Data. In

NDSS.
[46] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.

Membership inference attacks against machine learning models. In S&P. 3–18.
[47] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. 2017. Machine

Learning Models That Remember Too Much. In CCS. 587–601.
[48] Congzheng Song and Vitaly Shmatikov. 2019. Auditing Data Provenance in

Text-Generation Models. In KDD. 196–206.
[49] Congzheng Song and Vitaly Shmatikov. 2020. Overlearning Reveals Sensitive

Attributes. In ICLR.
[50] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui

Zhang, and Yi Zhou. 2019. A Hybrid Approach to Privacy-Preserving Federated

Learning - (Extended Abstract). Inform. Spektrum 42, 5 (2019), 356–357.

[51] Filipp Valovich and Francesco Aldà. 2017. Computational Differential Privacy

from Lattice-Based Cryptography. In NuTMiC. 121–141.
[52] Tim van Erven and Peter Harremoës. 2014. Rényi Divergence and Kullback-

Leibler Divergence. IEEE Trans. Inf. Theory 60, 7 (2014), 3797–3820.

[53] HanXiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image

Dataset for Benchmarking Machine Learning Algorithms. CoRR abs/1708.07747

(2017).

[54] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In FOCS. 162–167.
[55] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. 2018. Privacy

risk in machine learning: Analyzing the connection to overfitting. In CSF. 268–
282.

[56] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

2021. Understanding Deep Learning (Still) Requires Rethinking Generalization.

Commun. ACM 64, 3 (2021), 107–115.

[57] Yuqing Zhu and Yu-Xiang Wang. 2019. Poission Subsampled Rényi Differential

Privacy. In ICML. 7634–7642.

https://drive.google.com/file/d/1k6HILAQC5_mwjFflQ-VJazBuRfrDurfU/view?usp=sharing
https://drive.google.com/file/d/1k6HILAQC5_mwjFflQ-VJazBuRfrDurfU/view?usp=sharing
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/978-1-4613-8643-8
https://github.com/IBM/discrete-gaussian-differential-privacy
https://github.com/IBM/discrete-gaussian-differential-privacy


Appendix A EXACT SAMPLER FOR THE
POISSON DISTRIBUTION

We present the exact sampler for Poisson noise with a rational

parameter 𝜆, where

𝜆 :=𝑚𝑥/𝑚𝑦,with𝑚𝑥 ,𝑚𝑦 ∈ Z,𝑚𝑥 ≥ 0,𝑚𝑦 > 0.

Following Ref. [12], we adopt the convention that 𝑅𝑎𝑛𝑑𝐼𝑛𝑡 (𝑛),
which uniformly samples an integer from {1, . . . , 𝑛}, is the only ac-

cessible randomness for the sampler. There are two notable bound-

ary cases of input 𝜆. The first is when 𝜆 = 1, in which case an exact

sampler for Poisson(1) is given by Duchon and Duvignau in [20],

outlined in Algorithm 7. The second case is when 𝜆 < 1, presented

in Algorithm 8, whose idea comes from the fact that 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)
(𝜆 < 1) follows the same distribution as the sum of 𝑁 Bernoulli

variates of success probability 𝜆, with 𝑁 following a Poisson dis-

tribution of 𝜆 = 1 (see page 487 of [19]). Hence, when 𝜆 < 1, we

can reduce the sampling process to first calling Algorithm 7, and

then calling the Bernoulli sampler of success probability𝑚𝑥/𝑚𝑦

multiple times, depending on the outcome of Algorithm 7. Note

that a Bernoulli sampler of success probability 𝑝𝑥/𝑝𝑦 returns 1 if

𝑅𝑎𝑛𝑑𝐼𝑛𝑡 (𝑝𝑦) <= 𝑝𝑥 , and 0 otherwise, as shown in Algorithm 9.

We use Algorithm 7 and Algorithm 8 as building blocks for the

general case sampler, outlined in Algorithm 10. The overall idea of

Algorithm 10 is as follows. If𝑚𝑥 = 0 (i.e., 𝜆 = 0), we simply return

0 (Line 3). Otherwise, while𝑚𝑥 > 𝑚𝑦 (i.e., 𝜆 > 1), we repeatedly

reduce 𝜆 by 1 and add 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(1) to the returned value, until 𝜆 < 1

(Lines 5 and 6). This is because the sum of Poisson variates is a

Poisson. Finally, we reach the case when𝑚𝑥 < 𝑚𝑦 (i.e., 0 ≤ 𝜆 < 1),

and we simply call Algorithm 8 with parameter𝑚𝑥/𝑚𝑦 and add the

outcome to the return value (Lines 8 and 9) if𝑚𝑥 > 0 (i.e., 𝜆 > 0).

A.1 Running Time for Sampling Noise
Next, we empirically compare the running time of the exact Skellam

sampler and the exact discrete Gaussian sampler, as well as their

respective approximate versions. We use Algorithm 10 to construct

exact Skellam variates, since a Skellam sample can be obtained

as the difference between two Poisson samples. In our Python

implementation, we adopt the convention that randrange(), which
uniformly samples an integer from the specified range, is the only

accessible randomness, following the implementation of Ref. [32].

For the non-exact samplers based on floating point approximations,

we use the implementations from the TensorFlow libraries. We

generate 10
5
samples and report the time of generating all samples,

averaged over 10 runs. For the exact samplers, the samples are

generated sequentially. For the non-exact samplers, the entire array

of 10
5
samples are generated at once as a tensor. The experiments

are conducted on a Linux machine with four Intel Xeon Gold 6240

CPUs and 376 gigabytes of memory.

We vary the variance for Skellam and Discrete Gaussian dis-

tributions from {16, 8, 4, 2, 1}. This setting covers the particularly
interesting parameter regime considered in this paper where SMM
achieves better privacy-utility trade-off than DGM (i.e., when the

noise variance is small and the bitwidth is small). The results are

shown in Table 1. We observe that the exact sampler for Skellam is

more efficient than the exact sampler for Discrete Gaussian, espe-

cially when the variance of the noise distribution is small. Mean-

while, the approximate sampler for Skellam is also much faster than

the approximate sampler for Discrete Gaussian. The results sug-

gests that it is more efficient to use Skellam than Discrete Gaussian

for both practical DP applications (using the exact version) and DP

illustrations (using the approximate version) under small bitwidths.

Finally, the approximate samplers for both distributions are much

faster than the exact ones, for obvious reasons. Further improving

the running time for the exact samplers is an interesting future

work direction.

Algorithm 7: Exact sampler for Poisson(1)

Output: 𝑘 , a sample from Poisson(1).

1 𝑛 ← 1, 𝑔← 0, 𝑘 ← 1.

2 while true do
3 𝑖 ← 𝑅𝑎𝑛𝑑𝐼𝑛𝑡 (𝑛 + 1) . // uniformly sample from {1, . . . , 𝑛 + 1}
4 if 𝑖 = 𝑛 + 1 then
5 𝑘 ← 𝑘 + 1.
6 else if 𝑖 > 𝑔 then
7 𝑘 ← 𝑘 − 1, 𝑔← 𝑛 + 1.
8 else
9 return 𝑘 .

10 𝑛 ← 𝑛 + 1.

Algorithm 8: Exact sampler for Poisson(𝜆), 0 < 𝜆 < 1

Input:𝑚𝑥 ,𝑚𝑦 ∈ Z,𝑚𝑦 > 0, 0 <𝑚𝑥 <𝑚𝑦 .

Output: 𝑘 , a sample from Poisson(𝜆), with 𝜆 :=𝑚𝑥 /𝑚𝑦 .

1 𝑘 ← 0.

2 𝑛 ← 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (1) . // Sample 𝑛 from Poisson(1) using Algorithm 7.

3 for 𝑖 = 1..𝑛 do
4 𝑘 ← 𝑘 + 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑚𝑥 /𝑚𝑦 ) .
5 return k.

Algorithm 9: Exact sampler for Bernoulli(𝑝), 0 ≤ 𝑝 ≤ 1

Input: 𝑝𝑥 , 𝑝𝑦 ∈ Z, 𝑝𝑦 > 0, 0 ≤ 𝑝𝑥 ≤ 𝑝𝑦 .

Output: A sample from Bernoulli(𝑝), with 𝑝 := 𝑝𝑥 /𝑝𝑦 .
1 𝑛 ← 𝑅𝑎𝑛𝑑𝐼𝑛𝑡 (𝑝𝑦 ) . // Uniformly sample from {1, 2, . . . , 𝑝𝑦 }
2 if 𝑛 ≤ 𝑝𝑥 then
3 return 1.

4 else
5 return 0.

Appendix B DISCRETE GAUSSIAN MIXTURE
MECHANISM

So far, our discussion focuses on injecting random noise to the

gradients following the Skellammixture distribution. The insightful

reader might have found that the algorithmic framework of our

proposed method is not limited to the Skellam distribution. In this

appendix, we adapt the proposed mechanism to work with the

Discrete Gaussian noise [12], leading to a new method that we call

the Discrete Gaussian Mixture (DGM) mechanism.



Variance 32 16 8 4 2 1

Exact Skellam 26.77 15.09 9.32 6.41 4.98 5.38
Exact DG 16.98 17.66 18.17 19.68 19.69 24.52
TF Skellam 0.004 0.004 0.004 0.004 0.003 0.003
TF DG 0.053 0.053 0.053 0.052 0.052 0.052

Table 1: Average running time (in seconds) of generating 10
5

samples for Skellam and Discrete Gaussian (DG) using exact
and non-exact samplers (from TensorFlow libraries).

Algorithm 10: Exact sampler for general Poisson(𝜆), 𝜆 ≥ 0.

Input:𝑚𝑥 ,𝑚𝑦 ∈ Z,𝑚𝑥 ≥ 0,𝑚𝑦 > 0.

Output: 𝑘 , a sample from Poisson(𝜆), with 𝜆 :=𝑚𝑥 /𝑚𝑦 .

1 𝑘 ← 0.

2 if𝑚𝑥 = 0 then
3 return 𝑘 .

4 while𝑚𝑥 ≥𝑚𝑦 do
5 𝑛 ← 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (1) . // Sample from Poisson(1) using Algorithm 7

6 𝑘 ← 𝑘 + 𝑛,𝑚𝑥 ←𝑚𝑥 −𝑚𝑦.

7 if𝑚𝑥 > 0 then
8 𝑛 ← 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑚𝑥 /𝑚𝑦 ) . // Sample from Poisson(𝑚𝑥 /𝑚𝑦 )

using Algorithm 8

9 𝑘 ← 𝑘 + 𝑛.
10 return 𝑘

Algorithm 11: One-dimensional Discrete Gaussian mix-

ture mechanism (1DGM)

Input: A set of private values {𝑥1, . . . , 𝑥𝑛 | 𝑥𝑖 ∈ R}.
Parameters: Noise parameter 𝜆.

1 for 𝑖 ∈ 1..𝑛 do
2 𝑝𝑖 = 𝑥𝑖 − ⌊𝑥𝑖 ⌋.
3 Sample 𝑦𝑖 from a Bernoulli trial with success probability 𝑝𝑖 .

4 if 𝑦𝑖 = 0 then
5 𝑥∗

𝑖
← ⌊𝑥𝑖 ⌋ + NZ (0, 𝜎2) .

6 else
7 𝑥∗

𝑖
← ⌊𝑥𝑖 ⌋ + 1 + NZ (0, 𝜎2) .

8 𝑥∗ ← 𝑆𝑒𝑐𝐴𝑔𝑔 ( (𝑥∗
1
, . . . , 𝑥∗𝑛)) .

Output: 𝑥∗.

Algorithm 12:Multi-dimensional Discrete Gaussian mix-

ture mechanism (dDGM)

Input: A set of private values {𝑥1, . . . , 𝑥𝑛 | 𝑥𝑖 ∈ R𝑑 }.
Parameters: Noise parameter 𝜆, data dimension 𝑑 .

1 for 𝑖 ∈ 1..𝑛 do
2 for 𝑗 ∈ 1..𝑑 do
3 𝑝𝑖,𝑑 = 𝑥𝑖,𝑑 − ⌊𝑥𝑖,𝑑 ⌋.
4 Sample 𝑦𝑖,𝑗 from a Bernoulli trial with success probability

𝑝𝑖,𝑗 .

5 if 𝑦𝑖,𝑗 = 0 then
6 𝑥∗

𝑖,𝑑
← ⌊𝑥𝑖,𝑑 ⌋ + NZ (0, 𝜎2) .

7 else
8 𝑥∗

𝑖,𝑑
← ⌊𝑥𝑖,𝑑 ⌋ + 1 + NZ (0, 𝜎2) .

9 𝑥∗ ← 𝑆𝑒𝑐𝐴𝑔𝑔 ( (𝑥∗
1
, . . . , 𝑥∗𝑛)) .

Output: 𝑥∗.

Algorithms 11 and 12 present the pseudo code for the 1D and

multi-dimensional versions of DGM, respectively, which closely

resemble their counterparts in SMM, i.e., Algorithms 1 and 2. The

only difference between DGM and SMM lies in the noise distribu-

tion. In particular, in Lines 5 and 7 of Algorithm 11 and in Lines 6

and 8 of Algorithm 12, we inject Discrete Gaussian noise instead of

symmetric Skellam noise. Next, we present the privacy guarantees

of Algorithm 11 and Algorithm 12.

B.1 Privacy Analysis
Wefirst briefly review the privacy guarantee provided by distributed

Discrete Gaussian noise [31]. The main difference between using

Skellam noise and Discrete Gaussian noise in the distributed set-

ting is that the sum of independent Skellam noises is still Skellam,

whereas the sum of independent Discrete Gaussian noises no longer

follows the Discrete Gaussian distribution. Formally, we define

𝑍𝑛,𝜎2 to be the sum of 𝑛 independent Discrete Gaussian noises of

zero mean and variance 𝜎2. Formally,

𝑍𝑛,𝜎2 :=

𝑛∑︁
𝑖=1

𝑍𝑖 , , where 𝑍𝑖
i.i.d.∼ NZ (0, 𝜎2).

where NZ (0, 𝜎2) denotes the Discrete Gaussian distribution with

mean zero and variance 𝜎2. Then, the distribution of 𝑍𝑛,𝜎2 is close

to, but not exactly the same as, the distribution of 𝑍
1,𝑛𝜎2 . Canonne

et al. [12] derive their difference as

𝜏𝑛 := 10

𝑛−1∑︁
𝑘=1

exp

(
−2𝜋2𝜎2 𝑘

𝑘 + 1

)
, (7)

and we have the following theorem [31].

Theorem 7. For any integer 𝑠 ∈ Z, and any 𝛼 > 1, we have

𝐷𝛼 (𝑠 + 𝑍𝑛,𝜎2 ∥ 𝑍𝑛,𝜎2 ) ≤ min

{
𝛼𝑠2

2𝑛𝜎2
+ 𝜏𝑛,

𝛼

2

(
𝑠
√
𝑛𝜎
+ 𝜏𝑛

)
2
}
.

In a nutshell, Theorem 7 states that the sum of 𝑛 independent

Discrete Gaussian noises sampled from NZ (0, 𝜎2) provides approx-
imately the same privacy guarantee as a single Discrete Gaussian

noise sampled from NZ (0, 𝑛𝜎2), which is 𝛼𝑠2/(2 · 𝑛𝜎2) in terms of

Rényi divergence, with approximation error 𝜏𝑛 . Theorem 7 is the

foundation of our privacy analysis for Algorithm 11, presented as

follows.

Theorem 8. Suppose that each client’s data point 𝑥𝑖 satisfies

|𝑥𝑖 |2 + (|𝑥𝑖 | − ⌊|𝑥𝑖 |⌋) − (|𝑥𝑖 | − ⌊|𝑥𝑖 |⌋)2 ≤ 𝑐,

and ⌈|𝑥𝑖 |⌉ ≤ Δ∞. Then, whenever 𝛼 > 1, and Δ∞ satisfies

𝛼Δ2

∞
2𝑛𝜎2

+ 𝜏𝑛 <
0.1

𝛼 − 1 , and
(
Δ∞√
𝑛𝜎
+ 𝜏𝑛

)
2

<
0.2

𝛼2 − 𝛼
, (8)

Algorithm 11 with noise parameter 𝜎 satisfies (𝛼, 𝜏)-RDP with

𝜏 = min

{
1.1𝛼𝑐

2𝑛𝜎2
+ 1.1𝜏𝑛,

1.1𝛼𝑐

2𝑛𝜎2
+ 1.1𝛼Δ∞√

𝑛𝜎
𝜏𝑛 + 1.1𝜏2𝑛

}
,



Algorithm 14: Client procedure for perturbing gradients
(DGM)

Input: Private gradient 𝑔𝑖 ∈ R𝑑
Parameters: Noise parameter 𝜎 ; scale parameter 𝛾 ; clipping

thresholds 𝑐 and Δ∞; modulus𝑚 ∈ N.
Public randomness: Uniformly random sign vector

𝜉 ∈ {−1, +1}𝑑 .
1 𝑔𝑖 ← 𝐻𝑑𝐷𝜉𝑔𝑖 . // random rotation, where

𝐻 ∈ {−1/
√
𝑑, +1/

√
𝑑 }𝑑×𝑑 is a Walsh-Hadamard matrix satisfying

𝐻𝑇𝐻 = 𝐼 and 𝐷𝜉 ∈ {−1, 0, +1}𝑑×𝑑 is a diagonal matrix with 𝜉 on

the diagonal

2 𝑔𝑖 ← 𝛾 · 𝑔𝑖 . // scaling

3 𝑔𝑖 ← 𝑐𝑙𝑖𝑝 (𝑔𝑖 ) . // clip 𝑔𝑖 as in Algorithm 5

4 for 𝑘 ∈ 1 . . . 𝑑 do
5 𝑝𝑖,𝑘 = 𝑔𝑖,𝑘 − ⌊𝑔𝑖,𝑘 ⌋.
6 Sample 𝑦𝑖,𝑘 from a Bernoulli trial with success probability 𝑝𝑖,𝑘 .

7 if 𝑦𝑖,𝑘 = 0 then
8 𝑔∗

𝑖,𝑘
← ⌊𝑔𝑖,𝑘 ⌋ + NZ (0, 𝜎2) .

9 else
10 𝑔∗

𝑖,𝑘
← ⌊𝑔𝑖,𝑘 ⌋ + 1 + NZ (0, 𝜎2) .

11 𝑧𝑖,𝑘 ← 𝑔∗
𝑖,𝑘

mod 𝑚.

Output: 𝑧𝑖 ∈ Z𝑑𝑚 for the secure aggregation protocol.

Algorithm 13: Federated learning with Discrete Gaussian

mixture

Input: Private dataset of training records 𝑅 = (𝑟1, . . . , 𝑟𝑛) ; initial
model parameters 𝜃 ; secure aggregation protocol A.

Parameters: Sampling parameter 𝑞; number of iterations𝑇 ; noise

parameter 𝜎 ; scale parameter 𝛾 ; clipping thresholds 𝑐

and Δ∞; modulus𝑚 ∈ N.
1 for ℎ ∈ 1 . . .𝑇 do
2 The server shares the current model parameters 𝜃 to all clients.

3 𝐵
𝑢.𝑎.𝑟←− {1, 2, . . . , 𝑛}. // sample a subset of clients

uniformly at random from all clients using Poisson sampling

with rate 𝑞

4 for 𝑖 ∈ 𝐵 do
5 𝑔𝑖 ← ∇𝜃 (𝑟𝑖 ) . // gradient computation

6 𝑧𝑖 ← Algorithm 14(𝑔𝑖 ) . // DGM on the client side

7 𝑧 ← A({𝑧𝑖 }𝑖∈𝐵 ) . // secure aggregation

8 𝑔∗ ← Algorithm 6(𝑧) . // gradient sum retrieval by the server

9 𝜃 ← 𝑈𝑝𝑑𝑎𝑡𝑒 (𝜃,𝑔∗) . // model update based on the

approximate gradient sum

Output: 𝜃 model parameters learnt on 𝑋 .

The proof of Theorem 8 follows the same logic as the proof of

Theorem 5; their difference lies in the privacy guarantees provided

by the sum of Discrete Gaussian (see Theorem 7) and Skellam (see

Theorem 3) noises. A proof sketch for Theorem 8 is presented in

Appendix C.7. Next, we extend Theorem 8 to the multi-dimensional

setting using Lemma 1.

Corollary 3. Suppose that each client’s data point 𝑥𝑖 is 𝑑-
dimensional and satisfies

𝑑∑︁
𝑗=1

(
|𝑥𝑖, 𝑗 |2 +

(
|𝑥𝑖, 𝑗 | − ⌊|𝑥𝑖, 𝑗 |⌋

)
−

(
|𝑥𝑖, 𝑗 | − ⌊|𝑥𝑖, 𝑗 |⌋

)
2

)
≤ 𝑐,

∥𝑥𝑖 ∥1 ≤ Δ1, and ⌈|𝑥𝑖 |⌉ ≤ Δ∞. Then, whenever 𝛼 > 1, and Δ∞
satisfies Eq. (8), Algorithm 12 with noise parameter 𝜎 satisfies (𝛼, 𝜏)-
RDP with

𝜏 = min

{
1.1𝛼𝑐

2𝑛𝜎2
+ 1.1𝑑𝜏𝑛,

1.1𝛼𝑐

2𝑛𝜎2
+ 1.1𝛼Δ1√

𝑛𝜎
𝜏𝑛 + 1.1𝑑𝜏2𝑛

}
,

B.2 FL with Discrete Gaussian Mixture
Next, we apply DGM to FL with distributed SGD. Overall, the train-

ing procedure is similar to FLwith SMM; in the following, we briefly

explain the main modifications compared to SMM. The overall pro-

cedure is outlined as in Algorithm 13, and the client’s procedure for

noise injection is outlined as in Algorithm 14. In particular, in Line

6 of Algorithm 13, we replace the perturbation algorithm SMM
with DGM on the client side. In Lines 8 and 10 of Algorithm 14,

the clients inject discrete Gaussian noise instead of Skellam. The

server procedure and the clipping procedure remains the same as

in SMM. We present the privacy guarantee of Algorithm 13.

Theorem 9 (Privacy guarantee of Algorithm 13). For sam-
pling parameter 𝑞, sampled subset 𝐵, number of iterations 𝑇 , noise
parameter 𝜎 , clipping thresholds 𝑐 , Δ1 and Δ∞, for any 𝛼 satisfying
𝛼 > 1, 1.1𝛼𝑐/(2|𝐵 |𝜎2) < 0.1 − 1.1𝑑𝜏 |𝐵 | , and 1.1 · 𝛼𝑐/(2 · |𝐵 |𝜎2) +
1.1 · 𝛼Δ∞𝜏 |𝐵 |/(

√︁
|𝐵 |𝜎) < 0.1 − 1.1 · 𝑑𝜏2|𝐵 | , Algorithm 13 satisfies

(𝛼, 𝜏)-RDP with

𝜏 = 𝑇 · 1

𝛼 − 1 ·

log

(
(1 − 𝑞)𝛼−1 (𝛼𝑞 − 𝑞 − 1) +

𝛼∑︁
𝑙=2

(
𝛼

𝑙

)
(1 − 𝑞)𝛼−𝑙𝑞𝑙𝑒 (𝑙−1)𝜏 (𝑙)

)
,

where for 𝑙 = 2, . . . , 𝛼 , 𝜏 (𝑙) is defined as

𝜏 (𝑙) = min

{
1.1𝑙𝑐

2|𝐵 |𝜎2
+ 1.1𝑑𝜏 |𝐵 |,

1.1𝑙𝑐

2|𝐵 |𝜎2
+ 1.1𝑙Δ1√︁
|𝐵 |𝜎

𝜏 |𝐵 | + 1.1𝑑𝜏2|𝐵 |

}
.

B.3 Experiments
We empirically evaluate the performance of DGM for distributed

sum estimation and FL tasks. For all experiments, we enforce (𝜖, 𝛿)-

DP, as explained in Section 6. We fix 𝛿 to 10
−5

and vary 𝜖 in

{1, 2, 3, 4, 5}. For distributed sum estimation, we vary communi-

cation constraint𝑚 in 2
10, 214, 218 and scale ratio 𝛾 in 4, 64, 1024,

respectively. For FL, we consider two basic tasks MNIST and Fash-

ion MNIST. The model setup is the same as in Section 6. To be

more specific, we fix the batch size to 240 and train the model for

1000 rounds (i.e., 4 epochs) using the Adam optimizer with learning

rate 0.005. We vary the communication constraint per dimension

from {6, 8, 10} bits, and the scale parameter 𝛾 from {16, 64, 256},
respectively. Similar to SMM, the clipping threshold 𝑐 is set to 𝛾2

for DGM, corresponding to Δ2 = 1 in DPSGD. The L∞ clipping

bound is computed from Eq. (3). In terms of the bound for L1 norm

of input, we consider the general relationship Δ1 ≤
√
𝑑Δ2, where

Δ2

2
≤ 𝑐 = 𝛾2. Hence, we have Δ1 ≤

√
𝑑𝛾 .

Overall, the results of DGM are comparable to those of SMM,

except for small bandwidths. One reason is that the noise parameter

𝜎 for DGM is integer-valued in the current implementation in the

TensorFlow Privacy library
1
. For example, if the 𝜎 is computed

1
https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/

dp_query/distributed_discrete_gaussian_query.py

https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/dp_query/distributed_discrete_gaussian_query.py
https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/dp_query/distributed_discrete_gaussian_query.py


DPSGD

DGM 6 bits DGM 8 bits DGM 10 bits

SMM 6 bits SMM 8 bits SMM 10 bits

1 2 3 4 5

50

60

70

80

90

100

𝜖

t
e
s
t
a
c
c
u
r
a
c
y
%

(a) MNIST

1 2 3 4 5

40

50

60

70

80

90

𝜖

t
e
s
t
a
c
c
u
r
a
c
y
%

(b) Fashion MNIST

Figure 5: Evaluations on FL tasks with Fashion MNIST and
MNIST with varying communication constraint𝑚, privacy
parameter 𝜖, scale parameter 𝛾 .

Continuous Gaussian

DGM 10 bits DGM 14 bits DGM 18 bits

SMM 10 bits SMM 14 bits SMM 18 bits

1 2 3 4 5

10
0

10
1

𝜖

m
s
e

Figure 4: Evaluations distributed sum estimation using syn-
thetic dataset with varying communication constraint𝑚, pri-
vacy parameter 𝜖, scale parameter 𝛾 .

as 0.9 based on privacy constraints, then 𝜎 is rounded up to its

nearest integer, 1, for the actual perturbation. Hence, for small

bandwidth and small scale parameter, 𝜎 may remain constant with

different 𝜖’s (e.g., 𝜖 = 1, 2 and 𝜖 = 3, 4, 5 under 10-bit bandwidth

in Figure 4, and 𝜖 = 2, 3, 4, 5 under 6-bit bandwidth in Figure 5).

Another reason is that the sum of discrete Gaussian noises is no

longer a discrete Gaussian [31], and the divergence between the

sum of discrete Gaussian noises and a single discrete Gaussian noise

is large especially when the noise parameter 𝜎 is small, which can

happen under the small bandwidth settings. As a result, the sum of

discrete Gaussian noises are not as concentrated as Skellam, leading

to worse performance than SMM and even overflows under strong

privacy settings (𝜖 = 1 under 6-bit bandwidth in Figure 5).

Appendix C PROOFS
C.1 Proof of Theorem 4
We recall and prove Theorem 3, which states the Rényi divergence

between two Skellam distributions.

Theorem (Rényi divergence of Skellam distributions). For
any integer 𝑠 ∈ Z satisfying |𝑠 | ≤ Δ∞, and any 1 < 𝛼 < 2𝜆/Δ∞ + 1,
we have

𝐷𝛼 (𝑠 + 𝑆𝑘 (𝜆, 𝜆) ∥ 𝑆𝑘 (𝜆, 𝜆)) ≤
1.09𝛼 + 0.91

2

· 𝑠
2

2𝜆
.

Proof. Without loss of generality we consider 𝑠 > 0, since the

Skellam distribution 𝑆𝑘 (𝜆, 𝜆) is symmetric with respect to the origin.

We let 𝑍 ∼ Sk(𝜆, 𝜆) and compute Φ = exp((𝛼 − 1)𝐷𝛼 (𝑍 + 𝑠 ∥ 𝑍 )).
We first present several useful inequalities, whose proofs can be

found in Section D. Let

𝑄𝑠,𝑡 (𝑣) :=
𝑠∏
𝑖=1

𝑣 + 𝑖 +
√︁
(𝑣 + 𝑖)2 + 𝑡2
𝑡

. (9)

According to Lemma 6 in Appendix D, we have:

𝐼 |𝑣 | (𝑡)
𝐼 |𝑣+𝑠 | (𝑡)

≤ 𝑄𝑠,𝑡 (𝑣).

In addition, for any 0 < 𝑎 ≤ 𝑤 , according to Lemmata 7-9 in

Appendix D, we have

𝑤 +
√
𝑤2 + 1

(𝑎 −𝑤) +
√︁
(𝑎 −𝑤)2 + 1

≤ 𝑒2𝑤−𝑎, (10)

and

(
𝑤 +

√︁
𝑤2 + 1

)
·
(
(𝑎 −𝑤) +

√︁
(𝑎 −𝑤)2 + 1

)
≤ 𝑒𝑎 . (11)

By the definition of Skellam distributions and Eq. (9)

Φ =

∞∑︁
𝑧=−∞

(
𝐼 |𝑧 | (2𝜆)
𝐼 |𝑧+𝑠 | (2𝜆)

)𝛼−1
Pr[𝑍 = 𝑧]

≤
∞∑︁

𝑧=−∞

(
𝑄𝑠,2𝜆 (𝑧)

)𝛼−1
Pr[𝑍 = 𝑧]

=
∑︁
|𝑧 | ≤𝑠

(
𝑄𝑠,2𝜆 (𝑧)

)𝛼−1
Pr[𝑍 = 𝑧]

+
∑︁
𝑧>𝑠

( (
𝑄𝑠,2𝜆 (𝑧)

)𝛼−1 + (
𝑄𝑠,2𝜆 (−𝑧)

)𝛼−1)
Pr[𝑍 = 𝑧] .

We compute(
𝑄𝑠,2𝜆 (𝑧)

)𝛼−1 + (
𝑄𝑠,2𝜆 (−𝑧)

)𝛼−1
=

(
𝑄𝑠,2𝜆 (𝑧)𝑄𝑠,2𝜆 (−𝑧)

) 𝛼−1
2 ·

(
𝑅𝑠,2𝜆 (𝑧) +

1

𝑅𝑠,2𝜆 (𝑧)

)
,

where



𝑅𝑠,2𝜆 (𝑧) :=
(
𝑄𝑠,2𝜆 (𝑧)
𝑄𝑠,2𝜆 (−𝑧)

) 𝛼−1
2

.

By Eq. (10), when 𝑧 ≥ 𝑖 ,

𝑧 + 𝑖 +
√︁
(𝑧 + 𝑖)2 + (2𝜆)2

−𝑧 + 𝑖 +
√︁
(−𝑧 + 𝑖)2 + (2𝜆)2

=

𝑧+𝑖
2𝜆
+

√︃
( 𝑧+𝑖
2𝜆
)2 + 1

−𝑧+𝑖
2𝜆
+

√︃
( −𝑧+𝑖

2𝜆
)2 + 1

< exp( 𝑧
𝜆
).

Therefore, when 𝑧 ≥ 𝑠 , we have

𝑄𝑠,2𝜆 (𝑧)
𝑄𝑠,2𝜆 (−𝑧)

< exp

( 𝑠𝑧
𝜆

)
and 𝑅𝑠,2𝜆 (𝑧) < exp

(
𝑠 (𝛼 − 1)𝑧

2𝜆

)
.

Since the function 𝑣 ↦→ 𝑣 + 1

𝑣 is increasing,

𝑅𝑠,2𝜆 (𝑧) + 1

𝑅𝑠,2𝜆 (𝑧) < exp

(
𝑠 (𝛼−1)𝑧

2𝜆

)
+ exp

(
− 𝑠 (𝛼−1)𝑧

2𝜆

)
.

By Eq. (11), when 𝑧 ≥ 𝑖 ,

𝑧 + 𝑖 +
√︁
(𝑧 + 𝑖)2 + (2𝜆)2
2𝜆

· −𝑧 + 𝑖 +
√︁
(−𝑧 + 𝑖)2 + (2𝜆)2
2𝜆

=

(
𝑧+𝑖
2𝜆
+

√︂(
𝑧+𝑖
2𝜆

)
2

+ 1
)
·
(
−𝑧+𝑖
2𝜆
+

√︂(
−𝑧+𝑖
2𝜆

)
2

+ 1
)

≤ exp
(
𝑖
𝜆

)
.

Hence, when 𝑧 ≥ 𝑠 , we have 𝑄𝑠,2𝜆 (𝑧) · 𝑄𝑠,2𝜆 (−𝑧) < exp

(
𝑠 (𝑠+1)
2𝜆

)
.

Meanwhile, when −𝑠 < 𝑧 < 𝑠 , according to Lemma 10 in the

appendix, we have 𝑄𝑠,2𝜆 (𝑧) ≤ exp

(
𝑠 (𝑠+𝑧)
2𝜆

)
. Therefore,

Φ ≤ exp

(
𝑠 (𝑠 + 1) (𝛼 − 1)

4𝜆

)
·

∞∑︁
𝑧=𝑠

(
exp( 𝑠 (𝛼 − 1)𝑧

2𝜆
) + exp(−𝑠 (𝛼 − 1)𝑧

2𝜆
)
)
Pr[𝑍 = 𝑧]

+
𝑠−1∑︁

𝑧=−𝑠+1
exp

(
𝑠 (𝛼 − 1) (𝑠 + 𝑧)

2𝜆

)
Pr[𝑍 = 𝑧]

≤ exp

(
𝑠2 (𝛼−1)

2𝜆

) ∑∞
𝑧=−∞ exp

(
𝑠 (𝛼−1)𝑧

2𝜆

)
Pr[𝑍 = 𝑧]

= exp

(
𝑠2 (𝛼−1)

2𝜆

)
E

[
exp

(
𝑠 (𝛼−1)𝑍

2𝜆

)]
.

The moment generating function of Sk(𝜆, 𝜆) is E[𝑒𝑡𝑍 ] =

𝑒𝜆 (𝑒
𝑡+𝑒−𝑡−2)

. When 0 < 𝑡 < 1, we have 𝑒𝑡 + 𝑒−𝑡 − 2 < 1.09𝑡2.

Thus, when 𝜆 >
𝑠 (𝛼−1)

2
,

E
[
exp

(
𝑠 (𝛼−1)𝑍

2𝜆

)]
≤ exp

(
1.09𝜆( 𝑠 (𝛼−1)

2𝜆
)2

)
= exp

(
1.09𝑠2 (𝛼−1)2

4𝜆

)
.

As a result, when 𝜆 >
𝑠 (𝛼−1)

2
, we have

Φ ≤ exp

(
𝑠2 (𝛼 − 1)

2𝜆
+ 1.09𝑠2 (𝛼 − 1)2

4𝜆

)
. □

C.2 Proof of Theorem 5
We sketch the proof of Theorem 5. Missing details can be found

in Appendices C.3 and C.4. We start by considering the Rényi di-

vergence 𝐷𝛼 (1SMM(𝑋 ) ∥ 1SMM(𝑋 ′)) for any two neighboring

datasets 𝑋 and 𝑋 ′. The following lemma shows that this Rényi

divergence only depends on the tuple that differs in the two neigh-

boring datasets.

Lemma 4. Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} and 𝑋 ′ = {𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1} be
any two neighboring datasets, where each 𝑥𝑖 ∈ R. If 𝛼 > 1, then,

𝐷𝛼 (1SMM(𝑋 ) ∥ 1SMM(𝑋 ′))
≤ 𝐷𝛼 (1SMM({0, . . . , 0}) ∥ 1SMM({0, . . . , 0, 𝑥𝑛+1})), and

𝐷𝛼 (ISMM(𝑋 ′) ∥ 1SMM(𝑋 ))
≤ 𝐷𝛼 (1SMM({0, . . . , 0, 𝑥𝑛+1}) ∥ 1SMM({0, . . . , 0})) . □

By Lemma 4, to establish the privacy guarantee of Algorithm 1,

we only need to derive the maximum values of 𝐴𝛼 and 𝐵𝛼 defined

as follows:

𝐴𝛼 = 𝐷𝛼 (1SMM({0, . . . , 0}) ∥ 1SMM({0, . . . , 0, 𝑥𝑛+1})), and
𝐵𝛼 = 𝐷𝛼 (1SMM({0, . . . , 0, 𝑥𝑛+1}) ∥ 1SMM({0, . . . , 0})) .

Namely, it suffices to consider the dataset containing 𝑛 zeros and its

neighboring dataset containing 𝑛 zeros and an extra tuple 𝑥𝑛+1.
Without loss of generality, we assume 𝑥𝑛+1 > 0, and denote

𝐷𝛼 (𝑠 + 𝑆𝑘 (𝜆, 𝜆) ∥ 𝑆𝑘 (𝜆, 𝜆)) as 𝐷𝜆
𝛼 (𝑠) for integer 𝑠 ∈ Z. The follow-

ing lemma establishes upper bounds of 𝐴𝛼 and 𝐵𝛼 .

Lemma 5. For 𝛼 > 1,

𝐴𝛼 ≤ (1 − 𝑥𝑛+1 + ⌊𝑥𝑛+1⌋) · 𝐷𝜆
𝛼 (⌊𝑥𝑛+1⌋)

+ (𝑥𝑛+1 − ⌊𝑥𝑛+1⌋) · 𝐷𝜆
𝛼 (⌈𝑥𝑛+1⌉), and

𝐵𝛼 ≤
1

𝛼 − 1 · ln
(
(1 − 𝑥𝑛+1 + ⌊𝑥𝑛+1⌋) · exp

(
(𝛼 − 1) · 𝐷𝜆

𝛼 (⌊𝑥𝑛+1⌋)
)

+ (𝑥𝑛+1 − ⌊𝑥𝑛+1⌋) · exp
(
(𝛼 − 1) · 𝐷𝜆

𝛼 (⌈𝑥𝑛+1⌉)
) )
. □

It remains to bound 𝐷𝜆
𝛼 (𝑠), i.e., 𝐷𝛼 (𝑠 + 𝑆𝑘 (𝜆, 𝜆) ∥ 𝑆𝑘 (𝜆, 𝜆)) for

any integer 𝑠 ∈ Z, which is computed in Theorem 3. Based on

Theorem 3 and Lemmata 4 and 5, we can compute the privacy

guarantee of Algorithm 1, which we recall as follows.

Theorem. Suppose that each client’s data point 𝑥𝑖 satisfies

|𝑥𝑖 |2 + (|𝑥𝑖 | − ⌊|𝑥𝑖 |⌋) − (|𝑥𝑖 | − ⌊|𝑥𝑖 |⌋)2 ≤ 𝑐

and ⌈|𝑥𝑖 |⌉ ≤ Δ∞. Then, whenever 𝛼 satisfies

1 < 𝛼 < 2𝑛𝜆/Δ∞ + 1, and (10.9𝛼2 − 1.8𝛼 − 9.1) < 4𝑛𝜆/Δ2

∞,

Algorithm 1 with noise parameter 𝜆 satisfies (𝛼, 𝜏)-RDP with 𝜏 =
1.2𝛼+1

2
· 𝑐
2𝑛𝜆

.

Proof. By Theorem 3 and Lemmata 4 and 5, we can prove the

theorem by showing that for any 𝑥𝑛+1 > 0 satisfying the constraints

above, the following inequalities hold:

𝐴𝛼 ≤
1.2𝛼 + 1

2

· 𝑐

2𝑛𝜆
, and 𝐵𝛼 ≤

1.2𝛼 + 1
2

· 𝑐

2𝑛𝜆
,

where𝐴𝛼 and 𝐵𝛼 are defined as in Lemma 5. Let 𝑝 = 𝑥𝑛+1 − ⌊𝑥𝑛+1⌋.
Then, the first inequality follows from the fact that

(1 − 𝑝) · (⌊𝑥𝑛+1⌋)2 + 𝑝 · ( ⌊𝑥𝑛+1⌋ + 1)2 = 𝑥2𝑛+1 + 𝑝 − 𝑝
2,

and 1.09𝛼 + 0.91 < 1.1𝛼 ≤ 1.2𝛼 for 𝛼 > 1.

To prove the second inequality, we compute

Ξ = exp((𝛼 − 1)𝐵𝛼 ).



Since 𝑒𝑢 < 1.1𝑢 + 1 for 0 < 𝑢 < 0.1, by Theorem 3, we have

Ξ ≤(1 − 𝑝) ·
(
1.1 · (𝛼 − 1) · 1.09𝛼 + 0.91

2

· ( ⌊𝑥𝑛+1⌋)
2

2𝑛𝜆
+ 1

)
+ 𝑝 ·

(
1.1 · (𝛼 − 1) · 1.09𝛼 + 0.91

2

· ( ⌊𝑥𝑛+1⌋ + 1)
2

2𝑛𝜆
+ 1

)
.

Since 1 + 𝑢 < 𝑒𝑢 , and 𝛼 > 1

Ξ ≤(𝛼 − 1) · 1.199𝛼 + 1.001
4𝑛𝜆

(𝑥2𝑛+1 + 𝑝 − 𝑝
2) + 1

≤ exp
(
(𝛼 − 1) · 1.2𝛼 + 1

4𝑛𝜆
(𝑥2𝑛+1 + 𝑝 − 𝑝

2)
)
.

Hence we have 𝐵𝛼 = 1

𝛼−1 lnΞ ≤
1.2𝛼+1
4𝑛𝜆
(𝑥2

𝑛+1 + 𝑝 − 𝑝
2). □

C.3 Proof of Lemma 4
Proof. We sketch the proof for the first inequality. The proof

for the second inequality is similar. We first examine the output

distribution of 1SMM(X), which is a mixture of shifted symmetric

Skellam distributions. In particular, there are 2
𝑛
shifted Skellam dis-

tributions, each of which corresponds to a sequence of 𝑛 Bernoulli

trials, performed by all 𝑛 clients. For example, let us consider the

event that all clients succeed in the Bernoulli trials. The proba-

bility of this event is

∏𝑛
𝑖=1 (𝑥𝑖 − ⌊𝑥𝑖 ⌋). Conditioned on this, the

output distribution is

∑𝑛
𝑖=1 ⌈𝑥𝑖 ⌉ + 𝑆𝑘 (𝜆, 𝜆). In general, we denote

the weight of the shifted Skellam distribution as𝑤 𝑗 and the corre-

sponding shift as 𝑠 𝑗 , 𝑗 = 1, . . . , 2𝑛 . Then, 1SMM(𝑋 ) is distributed
as 𝑠 𝑗 + 𝑆𝑘 (𝜆, 𝜆), with probability𝑤 𝑗 .

Now, let us consider the neighboring dataset 𝑋 ′, obtained by

adding one tuple 𝑥𝑛+1 to 𝑋 , i.e., 𝑋 ′ = 𝑋 ∪ {𝑥𝑛+1}. Observe that

the output distribution of 1SMM(𝑋 ′) is still a mixture of shifted

Skellam distributions. The difference is that for 𝑋 ′, there are 2𝑛+1

shifted Skellam distributions, each of which corresponds to a se-

quence of (𝑛 + 1) Bernoulli trials, performed by all (𝑛 + 1) clients.
Now let us fix the outcome of the Bernoulli trials performed by

the first 𝑛 clients (i.e., the clients that are both in dataset 𝑋 and

𝑋 ′). Then for each outcome, adding the (𝑛 + 1)-th client introduces

two more possibilities. Namely, with probability 𝑥𝑛+1 − ⌊𝑥𝑛+1⌋, the
shifted vector 𝑠 𝑗 is further shifted by ⌈𝑥𝑛+1⌉, and otherwise by

⌊𝑥𝑛+1⌋. Then 1SMM(𝑋 ′) is distributed as 𝑠 𝑗 + ⌈𝑥𝑛+1⌉ + 𝑆𝑘 (𝜆, 𝜆),
with probability𝑤 𝑗 · (𝑥𝑛+1−⌊𝑥𝑛+1⌋); and 𝑠 𝑗 + ⌊𝑥𝑛+1⌋ +𝑆𝑘 (𝜆, 𝜆),with
probability𝑤 𝑗 · (1 − 𝑥𝑛+1 + ⌊𝑥𝑛+1⌋). Hence, we can also view the

output distribution of 1SMM(𝑋 ′)) as a mixture of 2
𝑛
distributions,

where each distribution itself is a mixture distribution. Then by

Theorem 2 (Theorem 13 in Ref. [52]), we only need to consider

the worst case Rényi divergence between one shifted Skellam dis-

tribution and a mixture of two shifted Skellam distributions. Let

𝑝 := 𝑥𝑛+1 − ⌊𝑥𝑛+1⌋. We have

𝐷𝛼 (1SMM(𝑋 ) ∥ 1SMM(𝑋 ′))
≤ max

𝑠 𝑗
𝐷𝛼

(
𝑠 𝑗 + 𝑆𝑘 (𝜆, 𝜆) ∥

𝑝 · (𝑠 𝑗 + ⌈𝑥𝑛+1⌉ + 𝑆𝑘 (𝜆, 𝜆)) + (1 − 𝑝) · (𝑠 𝑗 + ⌊𝑥𝑛+1⌋ + 𝑆𝑘 (𝜆, 𝜆))
)

= 𝐷𝛼

(
0 + 𝑆𝑘 (𝜆, 𝜆) ∥

𝑝 · (0 + ⌈𝑥𝑛+1⌉ + 𝑆𝑘 (𝜆, 𝜆)) + (1 − 𝑝) · (0 + ⌊𝑥𝑛+1⌋ + 𝑆𝑘 (𝜆, 𝜆))
)

= 𝐷𝛼 (1SMM({0, . . . , 0}) ∥ 1SMM({0, . . . , 0, 𝑥𝑛+1})) . □

C.4 Proof of Lemma 5
Proof. Let 𝑝𝑘 = exp(−2𝜆)𝐼 |𝑘 | (2𝜆), 𝑘 = 0,±1,±2, . . ., 𝑥 := 𝑥𝑛+1,

𝑝 := 𝑥 − ⌊𝑥⌋, and 𝑠 = ⌊𝑥⌋ . Then we have

exp((𝛼 − 1)𝐵𝛼 )

=

∞∑︁
𝑘=−∞

(
(1 − 𝑝) · 𝑝𝑘−𝑠 + 𝑝 · 𝑝𝑘−𝑠−1

𝑝𝑘

)𝛼−1
· ((1 − 𝑝) · 𝑝𝑘−𝑠 + 𝑝 · 𝑝𝑘−𝑠−1)

=

∞∑︁
𝑘=−∞

(
(1 − 𝑝) · 𝑝𝑘−𝑠 + 𝑝 · 𝑝𝑘−𝑠−1

𝑝𝑘

)𝛼
· 𝑝𝑘

≤
∞∑︁

𝑘=−∞

(
(1 − 𝑝) ·

(
𝑝𝑘−𝑠
𝑝𝑘

)𝛼
+ 𝑝 ·

(
𝑝𝑘−𝑠−1
𝑝𝑘

)𝛼 )
· 𝑝𝑘

= (1 − 𝑝) ·
∞∑︁

𝑘=−∞

(
𝑝𝑘−𝑠
𝑝𝑘

)𝛼
· 𝑝𝑘 + 𝑝 ·

∞∑︁
𝑘=−∞

(
𝑝𝑘−𝑠−1
𝑝𝑘

)𝛼
· 𝑝𝑘 .

The inequality follows from the fact that for 𝑎, 𝑏 > 0, 𝛼 > 1 the

function

𝑓 (𝑝) := ((1 − 𝑝) · 𝑎 + 𝑝 · 𝑏)𝛼 − ((1 − 𝑝) · 𝑎𝛼 + 𝑝 · 𝑏𝛼 )
is convex for 𝑝 ∈ [0, 1] and the fact that 𝑓 (0) = 𝑓 (1) = 0. The proof

for 𝐴𝛼 follows from Theorem 1. □

C.5 Proof of Corollary 2
Proof. By linearity of expectation, the error at each dimension

is composed of the error due to the 𝑛 independent Bernoulli trials,

and the 𝑛 independent Skellam noises sampled from 𝑆𝑘 (𝜆, 𝜆). The
proof then follows from Theorem 5 and the fact that adding 𝑛 inde-

pendent Skellam noise sampled from 𝑆𝑘 (𝜆, 𝜆) results in a Skellam

noise sampled from 𝑆𝑘 (𝑛𝜆, 𝑛𝜆). □

C.6 Proof of Theorem 6
Proof. We first apply the subsampling lemma of RDP

(Lemma 2) on 𝑑-dimensional SMM (Corollary 1), and ob-

tain the privacy cost of each iteration as follows: 𝜏1 =

1

𝛼−1 · log
(
(1 − 𝑞)𝛼−1 (𝛼𝑞 − 𝑞 − 1) +∑𝛼

𝑙=2

(𝛼
𝑙

)
(1 − 𝑞)𝛼−𝑙𝑞𝑙𝑒 (𝑙−1)𝜏 (𝑙)

)
.

Then, the case for 𝑇 iterations follows from the composition of

RDP (Lemma 1). □

C.7 Proof of Theorem 8
Proof of Theorem 8. We sketch the proof for Theorem 8. Sim-

ilar to 1SMM, we let 𝑝 := 𝑥𝑛+1 − ⌊𝑥𝑛+1⌋. It suffices to bound the

following two terms:

𝑋𝛼 := (1 − 𝑝) ·𝑄𝑛,𝜎
𝛼 (⌊𝑥𝑛+1⌋)

+ 𝑝 ·𝑄𝑛,𝜎
𝛼 (⌈𝑥𝑛+1⌉), and

𝑌𝛼 :=
1

𝛼 − 1 · ln
(
(1 − 𝑝) · exp

(
(𝛼 − 1) ·𝑄𝑛,𝜎

𝛼 (⌊𝑥𝑛+1⌋)
)

+ 𝑝 · exp
(
(𝛼 − 1) ·𝑄𝑛,𝜎

𝛼 (⌈𝑥𝑛+1⌉)
) )
,



where we define 𝑄
𝑛,𝜎
𝛼 (𝑠) := 𝐷𝛼 (𝑠 + 𝑍𝑛,𝜎2 ∥ 𝑍𝑛,𝜎2 ). For 𝑌𝛼 , we have

𝑌𝛼 ≤
1

𝛼 − 1 · ln
(
(1 − 𝑝) ·

(
1.1(𝛼 − 1) ·𝑄𝑛,𝜎

𝛼 (⌊𝑥𝑛+1⌋) + 1
)

+ 𝑝 ·
(
1.1(𝛼 − 1) ·𝑄𝑛,𝜎

𝛼 (⌈𝑥𝑛+1⌉) + 1
) )

≤ 1.1(1 − 𝑝)𝑄𝑛,𝜎
𝛼 (⌊𝑥𝑛+1⌋) + 1.1𝑝𝑄𝑛,𝜎

𝛼 (⌈𝑥𝑛+1⌉)
= 1.1𝑋𝛼 ,

where the first inequality is because 𝑒𝑢 < 1.1𝑢 + 1 for 0 < 𝑢 < 0.1;

and the second inequality is because ln(1 + 𝑢) < 𝑢 for 𝑢 > 0. Then

for 𝑋𝛼 , we have

𝑋𝛼 ≤ (1 − 𝑝)
𝛼 (⌊𝑥𝑛+1⌋)2

2𝑛𝜎2
+ 𝑝 𝛼 (⌊𝑥𝑛+1⌋ + 1)

2

2𝑛𝜎2
+ 𝜏𝑛, and

𝑋𝛼 ≤ (1 − 𝑝)
𝛼 (⌊𝑥𝑛+1⌋)2

2𝑛𝜎2
+ 𝑝 𝛼 (⌊𝑥𝑛+1⌋ + 1)

2

2𝑛𝜎2
+ 𝛼𝑥𝑛+1√

𝑛𝜎
𝜏𝑛 + 𝜏2𝑛 .

Hence,

𝑋𝛼 ≤ min

{
𝛼𝑐

2𝑛𝜎2
+ 𝜏𝑛,

𝛼𝑐

2𝑛𝜎2
+ 𝛼Δ∞√

𝑛𝜎
𝜏𝑛 + 𝜏2𝑛

}
□

Appendix D USEFUL LEMMATA

Lemma 6. Let 𝑄𝑠,𝑡 (𝑣) =
∏𝑠

𝑖=1

𝑣+𝑖+
√
(𝑣+𝑖)2+𝑡2
𝑡 . Then,

𝐼 |𝑣 | (𝑡)
𝐼 |𝑣+𝑠 | (𝑡)

≤ 𝑄𝑠,𝑡 (𝑣).

Proof. By properties of the modified Bessel function of the first

kind [6], we have inequality
𝐼𝑣−1 (𝑡 )
𝐼𝑣 (𝑡 ) < 𝑣+

√
𝑣2+𝑡2
𝑡 for 𝑣 ≥ 0, and

recurrence relation 𝐼𝑣+1 (𝑡) = 𝐼𝑣−1 (𝑡) − 2𝑣
𝑡 𝐼𝑣 (𝑡), which leads to

𝐼𝑣+1 (𝑡)
𝐼𝑣 (𝑡)

<
−𝑣 +

√
𝑣2 + 𝑡2
𝑡

, 𝑣 ≥ 0.

When 𝑣 < 0, substituting 𝑣 for −𝑣 − 1 in the previous formula,

𝐼 |𝑣 | (𝑡)
𝐼 |𝑣+1 | (𝑡)

=
𝐼−𝑣 (𝑡)
𝐼−𝑣−1 (𝑡)

<
𝑣 + 1 +

√︁
(𝑣 + 1)2 + 𝑡2
𝑡

When 𝑣 ≥ 0, we also have

𝐼 |𝑣 | (𝑡)
𝐼 |𝑣+1 | (𝑡)

=
𝐼𝑣 (𝑡)
𝐼𝑣+1 (𝑡)

<
𝑣 + 1 +

√︁
(𝑣 + 1)2 + 𝑡2
𝑡

Therefore, for every 𝑣 ,

𝐼 |𝑣 | (𝑡)
𝐼 |𝑣+𝑠 | (𝑡)

<

𝑠∏
𝑖=1

𝑣 + 𝑖 +
√︁
(𝑣 + 𝑖)2 + 𝑡2
𝑡

:= 𝑄𝑠,𝑡 (𝑣). □

Lemma 7. For any𝑤 ≥ 0,

𝑤 +
√︁
𝑤2 + 1 ≤ 𝑒𝑤 .

Proof. The inequality holds when𝑤 = 0. By taking the deriv-

ative, it can be verified that the function 𝑒𝑤 − (𝑤 +
√
𝑤2 + 1) is

increasing with respect to𝑤 . □

Lemma 8. For any 0 < 𝑎 ≤ 𝑤 ,

𝑤 +
√
𝑤2 + 1

(𝑎 −𝑤) +
√︁
(𝑎 −𝑤)2 + 1

≤ 𝑒2𝑤−𝑎 .

Proof. By Lemma 7, 𝑤 +
√
𝑤2 + 1 ≤ 𝑒𝑤 . Then, by Lemma 7

again,

1

(𝑎 −𝑤) +
√︁
(𝑎 −𝑤)2 + 1

= (𝑤 − 𝑎) +
√︁
(𝑤 − 𝑎)2 + 1 ≤ 𝑒𝑤−𝑎 . □

Lemma 9. For any 0 < 𝑎 ≤ 𝑤 ,

(𝑤 +
√︁
𝑤2 + 1) · ((𝑎 −𝑤) +

√︁
(𝑎 −𝑤)2 + 1) ≤ 𝑒𝑎 .

Proof. By Lemma 7, the inequality holds when𝑤 = 𝑎. By taking

derivative, it can be verified that the left hand side is decreasing

with respect to𝑤 . □

Lemma 10. When −𝑠 < 𝑧 < 𝑠 , we have

𝑄𝑠,2𝜆 (𝑧) ≤ exp

(
𝑠 (𝑠 + 𝑧)

2𝜆

)
.

Proof. Use Lemma 7. When 0 ≤ 𝑧 < 𝑠 ,

𝑄𝑠,2𝜆 (𝑧) ≤
𝑠∏
𝑖=1

exp

(
𝑧 + 𝑖
2𝜆

)
= exp

(
𝑠 (𝑠 + 1 + 2𝑧)

4𝜆

)
≤ exp

(
𝑠 (𝑠 + 𝑧)

2𝜆

)
.

When − 𝑠
2
≤ 𝑧 < 0, using the equality

𝑏 +
√︁
𝑏2 + (2𝜆)2
2𝜆

· −𝑏 +
√︁
(−𝑏)2 + (2𝜆)2
2𝜆

= 1,

we have

𝑄𝑠,2𝜆 (𝑧) =
𝑠∏
𝑖=1

𝑧 + 𝑖 +
√︁
(𝑧 + 𝑖)2 + (2𝜆)2
2𝜆

=

𝑠∏
𝑖=−2𝑧

𝑧 + 𝑖 +
√︁
(𝑧 + 𝑖)2 + (2𝜆)2
2𝜆

≤
𝑠∏

𝑖=−2𝑧
exp

(
𝑧 + 𝑖
2𝜆

)
= exp

(
𝑠 (𝑠 + 2𝑧 − 1)

4𝜆

)
≤ exp

(
𝑠 (𝑠 + 𝑧)

2𝜆

)
.

When −𝑠 < 𝑧 < − 𝑠
2
, we have

𝑄𝑠,2𝜆 (𝑧) =
−2𝑧−𝑠−1∏

𝑖=1

𝑧 + 𝑖 +
√︁
(𝑧 + 𝑖)2 + (2𝜆)2
2𝜆

≤ 1 ≤ exp

(
𝑠 (𝑠 + 𝑧)

2𝜆

)
.

□


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Skellam Distribution
	2.2 Rényi Divergence
	2.3 Differential Privacy
	2.4 Distributed Differential Privacy

	3 Skellam Mixture Mechanism
	3.1 Distributed Sum Estimation with Privacy
	3.2 Skellam Mixture Noise
	3.3 Skellam Noise Preserves Privacy
	3.4 Theoretical Analysis of Skellam Mixture Mechanism

	4 Federate Learning with Skellam Mixture Mechanism
	4.1 Privacy Analysis

	5 Related Work
	6 Experiments
	6.1 Distributed Sum Estimation
	6.2 Federated Learning

	7 Conclusion
	Acknowledgments
	References
	A Exact Sampler for the Poisson Distribution
	A.1 Running Time for Sampling Noise

	B Discrete Gaussian Mixture Mechanism
	B.1 Privacy Analysis
	B.2 FL with Discrete Gaussian Mixture
	B.3 Experiments

	C Proofs
	C.1 Proof of Theorem 4
	C.2 Proof of Theorem 5
	C.3 Proof of Lemma 4
	C.4 Proof of Lemma 5
	C.5 Proof of Corollary 2
	C.6 Proof of Theorem 6
	C.7 Proof of Theorem 8

	D Useful Lemmata

