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ABSTRACT
We study the classic machine learning problem of logistic regression

with differential privacy (DP), under the distributed setting. While

logistic regression with DP has been extensively studied in the

literature, most of the research is focused on the centralized setting,

where a centralized server is trusted with the entire private training

dataset. However, in many real-world scenarios (e.g., federated

learning), the data is distributed among multiple clients who may

not trust others, including clients and the server. While the server

tries to learn a model using the clients’ private datasets, the clients

should provide each individual record in their local datasets with a

formal privacy guarantee.

Towards this end, we propose a general mechanism for logistic

regression with DP under the distributed setting, based on out-

put perturbation. We show that our solution satisfies differential

privacy and enjoys privacy amplification by secure aggregation, a

recent technique for DP under the distributed setting. In addition,

our solution also incurs much lower communication costs, com-

pared with existing ones. In particular, our solution requires the

clients to communicate only once throughout the entire FL process.

Finally, we provide experimental results on real-world datasets to

demonstrate the effectiveness of our solution.
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1 INTRODUCTION
Differential Privacy (DP) [27] is the state-of-the-art algorithmic

framework for preserving an individual level of privacy. DP has

been widely studied in the academia [8, 29, 30, 33, 34, 54], and

deployed in the industry [5, 23, 31, 55]. The classic centralized

DP framework assumes a trusted server, who runs a randomized

mechanism on an input private dataset, and outputs perturbed

statistics (e.g., [7, 25, 27, 28]), a sanitized dataset (e.g., [34, 48, 66]),

a randomized decision (e.g., [47, 52]), or perturbed parameters for

a machine learning model (e.g., [1, 18, 62]), etc. The canonical way

to turn a non-DP mechanism into its differentially private version

is to let the server inject random noise, whose scale matches the

influence of an individual record from the input dataset, to the

output of the underlying non-DPmechanism. Intuitively, this means

that on observing the output, any adversary cannot infer whether

any given individual’s record is included in the input dataset or

not, since the individual’s influence is already masked by the noise.

With that being said, individual privacy is achieved.

Logistic Regression (LR) [22, 46] is a classic algorithm in Ma-

chine Learning. In the standard setting of LR, there are two classes

of data, encoded by a binary variable in {−1, 1}. The goal of LR

is to find a model that correctly predicts the value of the binary

variable, based on a given data point. For example, given a patient’s

record, an LR model may predict whether the patient has diabetes

or not, using the model parameters. Logistic regression with DP

has been extensively studied in the literature. Proposed methods

include objective perturbation [18], output perturbation [19] and

gradient perturbation [1, 62]. Note that all these methods focus

on the centralized setting where a trusted server holds the entire

private training dataset and runs a centralized-DP mechanism on

the dataset.

In real-world scenarios, however, the private data is sometimes

distributed among multiple clients who do not trust each other. In

the meantime, an un-trusted server wants to learn a global model

using the clients’ private datasets. The goal of these clients is to

collaboratively learn a global model without sharing their private

data. This setting emerges from Federated Learning (FL) [11, 16,

17, 41, 44, 51, 61]. Note that it is more challenging to achieve DP

under the distributed setting while maintaining the same level of

utility as in the centralized setting, where the server is trustworthy.

Intuitively, this is because each client must independently inject a

sufficient amount of random noise on her side before sharing any

information (e.g., gradients, model parameters, etc.) with others, to

achieve an individual level of privacy for her local dataset. In the
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meantime, the independent random noises from different clients

accumulate into a much larger random noise, and ultimately cause

utility degradation for the global model.

The recent techniques of Secure Aggregation [12] and integer-

valued DP noise [3, 4, 40] together produce an elegant solution to

improve the privacy-utility trade-off for the distributed setting. To

be more specific, [3, 4, 40] show that, the global model trained using

gradient perturbation under the distributed setting achieves compa-

rable utility as the one trained under the centralized setting, while

maintaining the same privacy guarantee for individual records. The

key idea is as follows. The clients first independently inject integer-

valued random noise into their discretized gradients. After that,

the clients collectively participate in the Secure Aggregation proto-

col [12] (SecAgg) to securely compute the sum of their perturbed

gradients. Finally, the server retrieves the aggregate result from the

clients. Note that the only information that the server learns about

the private gradients is the aggregate result, due to the security

property of SecAgg. In addition, since independent integer-valued

noises from clients aggregate into noise with a larger variance, the

overall variance of the noise in the aggregate output is 𝑁 times

larger than each individual noise on the client side (𝑁 is the number

of clients). Hence, from the server’s perspective, the gradient sum

is effectively perturbed by the aggregation of all clients’ noises. As

a result, the privacy guarantee is amplified by a factor of 1/
√
𝑁 ,

matching that in the centralized setting.

Limitations. However, the above-mentioned gradient perturba-

tion technique, which is based on gradient descent and its variants,

incurs high communication costs when used under the distributed

setting [10, 12, 38]. To be more specific, at every round, all (or a

subset of) clients need to share their gradients with the server

through the SecAgg protocol, and wait for the server to broadcast

the updated model parameters. This process is repeated thousands

number of times until the FL process ends. From a practical per-

spective, a larger number of communications rounds also possibly

lead to larger privacy risks, such as eavesdropping. For example, an

adversary could have a higher chance of successfully eavesdropping

on the communication channel between clients. Once the adversary

succeeds, the privacy guarantee of the whole DP training mecha-

nism would collapse, as it is based on the assumption of secure and

reliable communication channels in the SecAgg protocol as well as

in the general secure multiparty computation (MPC) models.

In addition, as shown in [19], gradient perturbation algorithms

incur higher privacy costs for LR with DP while maintaining the

same model utility as output perturbation algorithms, under the

centralized setting, due to repeatedly computing sensitive informa-

tion over the same input dataset. The high-level explanation is that

the original analysis for DPSGD does not take the smoothness and

strong convexity of the loss function of logistic regression. Instead,

Chen et al. [19] show that the final model parameters of RSGD-AR
have bounded sensitivity by utilizing such properties. Hence, it

is reasonable to suspect that gradient perturbation may also in-

cur high privacy costs under the distributed setting as well. Both

points regarding privacy overheads and communication overheads

suggest we develop a new solution for logistic regression with DP

under the distributed setting that achieves better privacy-utility

trade-off and incurs low communication costs simultaneously.

Our contributions. In this paper, we propose a mechanism for lo-

gistic regression with differential privacy under distributed setting,

named Sk-RSGD-AR. As we have mentioned earlier, gradient per-

turbation may not be the best choice under the distributed setting.

Instead, we use the state-of-the-art output perturbation mechanism

for LR under centralized DP (i.e., RSGD-AR [19]) as the building

block for our solution. We also incorporate integer-valued DP noise

under the distributed setting into our solution. Through careful

privacy reasoning, we show that Sk-RSGD-AR achieves a formal

privacy guarantee and in the meantime, incurs significantly lower

communication costs than gradient perturbation mechanisms. In

particular, all clients need to participate in SecAgg only once to

share their aggregate perturbed model to the server at the very

end of the training process. Finally, we conduct experiments on

real-world datasets to demonstrate the effectiveness of our solution.

2 PRELIMINARIES
2.1 Differential Privacy
Differentially Privacy (DP) ensures individual level privacy by re-

quiring that the output distributions of a randomized mechanism

M are similar for neighboring input datasets 𝐷 and 𝐷′, where two
datasets 𝐷 and 𝐷′ are called neighboring (written as 𝐷 ∼ 𝐷′) if one
can be obtained from the other by replacing one individual record.

Intuitively, this means that from the outcome ofM, one can not

infer whether any particular individual participates in the input

dataset or not. As a result, the individual level of privacy is achieved

for records in the dataset. The standard definition of differential

privacy is (𝜖, 𝛿)-DP [27].

Definition 1 ((𝜖, 𝛿)-Differential Privacy [27]). Consider pos-
itive parameters 𝜖 and 𝛿 , we say a mechanism M satisfies (𝜖, 𝛿)-
differential privacy (DP) if the following holds for any set of output
O ⊆ 𝑅𝑎𝑛𝑔𝑒 (M) and any neighboring datasets 𝐷 and 𝐷′.

Pr[M(𝐷) ∈ O] ≤ exp(𝜖) · Pr[M(𝐷′) ∈ O] + 𝛿.

The parameters 𝜖 and 𝛿 in Definition 1 represent the level of

privacy protection. Larger values of 𝜖 and 𝛿 imply weaker level of

privacy guarantees and smaller values of 𝜖 and 𝛿 imply stronger

level of privacy guarantees. Intuitively, this is because as 𝜖 and 𝛿

decrease, it becomes more difficult for an adversary to distinguish

the outcome from distributions M(𝐷) and M(𝐷′). As we can

see, (𝜖, 𝛿)-DP characterizes the worst-case privacy guarantee for a

mechanism, considering all possible outputs.

An alternative definition called Rényi-Differential Privacy (RDP) [54]

is based on the concept of Rényi Divergence, reviewed next.

Definition 2 (Rényi Divergence [63]). Assuming that distribu-
tions 𝑃 and 𝑄 are defined over the same domain, and 𝑃 is absolute
continuous with respect to 𝑄 , then the Rényi divergence of 𝑃 from 𝑄

of finite order 𝛼 ∈ (0, 1) ∪ (1,∞) is defined as:

𝐷𝛼 (𝑃 ∥𝑄) =
1

𝛼 − 1

logE𝑋∼𝑃

[(
𝑃 (𝑋 )
𝑄 (𝑋 )

)𝛼−1

]
.

Definition 3 (Rényi Differential Privacy (RDP) [54]). Con-
sider positive parameters 𝛼 (𝛼 ≠ 1) and 𝜖 , we say a mechanismM
satisfies (𝛼, 𝜖)-Rényi differential privacy (RDP) if for all neighboring
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datasets 𝐷 and 𝐷′, the following holds

𝐷𝛼 (M(𝐷) ∥M(𝐷′)) ≤ 𝜖.

To ensure the differential privacy of a base mechanism, it suffices

to inject random noise into its outcome. The scale of the noise

should be proportional to the sensitivity of the basemechanism [27],

defined as follows.

Definition 4 (Sensitivity). The sensitivity of a 𝑑-dimensional
function 𝑔 which takes input from domain D, denoted as 𝑆 (𝑔), is
defined as follows

𝑆 (𝑔) = max

𝐷∼𝐷 ′
∥𝑔(𝐷) − 𝑔(𝐷′)∥,

where ∥·∥ is a norm. Here the maximum is taken over all possible
neighboring datasets 𝐷 and 𝐷′ that belongs to the input domain D.

For example, injecting continuous Gaussian noise sampled from

N(0, 𝜎2) to each dimension of function𝑔 satisfies (𝛼, 𝛼𝑆2 (𝑔)/(2𝜎2))-
RDP [54]. Here 𝑆 (𝑔) stands for the L2 sensitivity of function 𝑔.

Finally, given any 0 < 𝛿 < 1, we can convert the privacy protec-

tion of a randomized mechanism under (𝛼, 𝜖)-RDP to that under

(𝜖′, 𝛿)-DP using the following conversion rule.

Lemma 1 (Conversion rule for (𝛼, 𝜏)-RDP [15]). For any 𝛼 ∈
(1,∞), if 𝐷𝛼 (M(𝐷) ∥M(𝐷′)) ≤ 𝜖 for any neighboring datasets 𝐷
and 𝐷′, thenM satisfies (𝜖′, 𝛿)-DP for

𝜖′ = 𝜖 + log(1/𝛿) + (𝛼 − 1) log(1 − 1/𝛼) − log(𝛼)
𝛼 − 1

.

2.2 DP under Distributed Settings
Recall that the classic centralized differential privacy framework [27]

assumes that a single server is trusted with the entire private dataset

whereas in distributed settings, such as Federated Learning [44, 51],

the private dataset is partitioned to different clients, who do not

trust other clients and the server. In this distributed setting, the

server tries to learn a function of interest calculated on the entire

private dataset (e.g., the population mean), while the clients want

to maintain an individual level of privacy for their local private

datasets.

Distributed Differential Privacy [4, 40] suggest the following

solution. Each client first independently perturbs the outcome of

the function of interest calculated on her local private dataset (e.g.,

gradients computed on local data) with some random noise. Next,

the clients use SecAgg [12], a secure multiparty computation proto-

col, to securely compute the sum of the perturbed outcomes from

all participating clients. The server then retrieves the aggregate

result. Note that since SecAgg is cryptographically secure, the only

information that the server learns is the aggregate result. Namely,

from the server’s perspective, the aggregate result is effectively per-

turbed by the sum of the individual random noises injected on the

client side. The differential privacy guarantee of such a mechanism

is determined by the sensitivity of the function of interest and the

overall variance of the aggregate random noise contributed by all

clients, instead of the random noise from of a single client. Roughly

speaking, the privacy level for individual records from the client’s

local dataset is amplified by a factor of 1/
√
𝑁 . Intuitively, such pri-

vacy amplification is done by hiding a client’s identity among other

clients, since all the server observes is the aggregate outcome. We

refer interested readers to [4, 30, 40] for more detailed discussions

on distributed DP and on its privacy amplification.

Note that the original notion of Distributed-DP protects a client-

level of privacy [3, 4, 40] instead of a record-level of privacy, which

is the focus of this paper. We would like to note that the idea of com-

bining secure aggregation with differentially private noise can still

be used in our setting to protect a record level of DP. This is because

to protect a record (resp. client), it suffices to inject random noise

of scale proportional to the sensitivity of the function of interest,

where the sensitivity measures the change of the function due to a

record (resp. client). Note that in both settings, the entire private

dataset is partitioned to 𝑁 clients, and the added (or removed) pri-

vate training item/example is located in exactly one of the clients.

In our setting, exactly one training item from the entire private

dataset contributes to the difference in the aggregate statistics. In

particular, for gradient perturbation, the corresponding sensitivity

is the clipping norm for the gradient of a training record/item.

Remark. Note that utilizing SecAgg alone as well as other MPC

protocols do not provide a rigorous statistical privacy guarantee

regarding the inputs in FL, in the sense that on observing the out-

come of MPC, a curious adversary is still able to extract information

about the private input datasets, as pointed out in [37, 53]. On the

other hand, using DP alone for FL applications leads to unsatis-

factory privacy-utility trade-offs, compared with the centralized

setting [40]. Instead, when combining DP with MPC under FL, as

done in Distributed-DP, we are able to achieve privacy-utility trade-

offs comparable to the centralized setting, as MPC simulates the

benefits of a trusted data curator in the centralized setting.

In the rest of this paper, we see SecAgg as a black-box for secure
aggregation, which takes inputs from clients and returns the sum

of their inputs. Following the assumption of previous works in DP

FL [3, 12, 40], we focus on the semi-honest setting, i.e., all clients

and the server strictly follow the noise injection and MPC protocol

while trying to infer other clients’ private inputs.

2.3 Skellam Noise
SecAgg [12] is not directly compatible with the traditional real-

valued random noise such as Gaussian and Laplace noises [7, 27, 28].

This is because SecAgg is based on MPC, which only operates over

finite integers. Accordingly, to achieve privacy, the client should

inject an integer-valued random noise into an integer-valued func-

tion. While one can easily turn a general real-valued function into

its integer-valued version by stochastically rounding the function’s

output to its nearest integers [4, 40] (we will see in Section 4),

integer-valued noises are more difficult to design, implement and

analyze.

Agarwal et al. [4] propose to use binomial noise instead of con-

tinuous Gaussian noise [28]. However, the binomial noise has a

heavy tail, which leads to unsatisfactory privacy analysis under

common settings in FL. To address this issue [15, 40] propose to

use the discrete Gaussian noise and [3] propose the symmetric

Skellam noise. Compared with discrete Gaussian noise, symmetric

Skellam noise is easier to implement on digital computers, as it

is the difference between two identical and independent Poisson

variables. We next review the Skellam noise in more detail.
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Let independent random variates 𝑌1 and 𝑌2 follow the same

Poisson distribution of parameter 𝜆. Then we say a random variate

𝑍 follows a symmetric Skellam distribution (abbreviated as Skellam

distribution), if it is the difference between 𝑌1 and 𝑌2. We write

𝑍 ∼ Sk(𝜆). We can derive the probability distribution of 𝑍 as

Pr[𝑍 = 𝑘] = exp(−2𝜆)𝐼 |𝑘 | (2𝜆), 𝑘 = 0,±1,±2, . . . ,

where 𝐼𝑣 (𝑢) ≜
∑∞
ℎ=0

1

ℎ!Γ (ℎ+𝑣+1)
(
𝑢
2

)
2ℎ+𝑣

is called themodified Bessel

function of the first kind. By linearity of expectation, 𝑍 has mean

0 and variance 2𝜆. We also note that Skellam distributions have

a favorable aggregatable property for privacy amplification using

SecAgg under the distributed setting: the sum of any two indepen-

dent Skellam variates is still a Skellam variate. This is because the

sum of two independent Poisson variates is still a Poisson variate. In

particular, when 𝑁 clients all independently inject identical noises

sampled from Sk(𝜆) to their private data (e.g., gradients) and send

the perturbed data as input to SecAgg, the privacy guarantee of

the output by SecAgg is effectively determined by the aggregate

Skellam noise Sk(𝑁𝜆), which has variance 2𝑁𝜆.

In the rest of this paper, we use 𝑍 ∼ Sk
𝑑 (𝜆) to denote a 𝑑-

dimensional random variable 𝑍 ∈ Z𝑑 , where each dimension of

𝑍 is independently sampled from Skellam distribution Sk(𝜆) . In
addition,Ref. [3] show that Skellam noise achieves RDP.

Lemma 2. Let Δ1 and Δ2 be the L1 and L2 sensitivities of an
integer-valued function 𝑔, then independently injecting Skellam noise
sampled from Sk(𝜆) to all dimensions of 𝑔 satisfies (𝛼, 𝜖)-RDP for
𝛼 ∈ Z, 𝛼 > 1, and

𝜖 =
𝛼Δ2

2

4𝜆
+min

(
(2𝛼 − 1)Δ2

2
+ 6Δ1

16𝜆2
,

3Δ1

4𝜆

)
.

3 PROBLEM STATEMENT
3.1 Logistic Regression with Differential

Privacy
Our goal is to design a privacy preservingmechanismM that solves

the following optimization problem of w, written as follows.

arg min

w∈Θ
𝐹 (w) = arg min

w∈Θ

1

|𝑆 |
∑︁
(x,𝑦) ∈𝑆

𝑓 (w, (x, 𝑦)) . (1)

where 𝑆 is the input dataset to mechanism M. For each record

(x, 𝑦) ∈ 𝑆 , the vector x ∈ R𝑑 denotes the feature vector, and the

binary value 𝑦 ∈ {−1, 1} represents the label. Here function 𝑓

represents the loss per record, and Θ is a convex space for the

model parameters. We write ⟨u, v⟩ as the inner product (element-

wise product) of two vectors u and v. Following previous work [19],
we define the loss function of logistic regression as follows.

𝑓 (w, x, 𝑦) = log(1 + exp(−𝑦 · ⟨w, x⟩)) + 𝜇

2

∥w∥2
2
. (2)

Without loss of generality, we assume all feature vectors have a

unit norm (i.e., ∥x∥2 = 1), since otherwise, we can normalize the

features. It can be easily shown that function 𝑓 (w, x, 𝑦) is (1/4 + 𝜇)-
smooth and 𝜇-strongly convex with respect to its first argument. In

our experiments, we fix 𝜇 to 0.001, following previous work [19].

Under the distributed setting, the private dataset 𝑆 is partitioned

across 𝑁 clients. Namely, each client 𝑖 holds a partition 𝑆𝑖 of the

entire dataset, and ∪𝑖𝑆𝑖 = 𝑆 , 𝑆𝑖 ∩ 𝑆 𝑗 = ∅ when 𝑖 ≠ 𝑗 . For simplic-

ity, we assume that the size of partition |𝑆𝑖 | is equal for all clients
𝑖 ∈ [𝑁 ]. In terms of privacy, we require thatM’s outcome dis-

tribution should be similar regardless of the participation of any

individual record in the input private dataset 𝑆 . Namely,M satis-

fies DP. In particular, we consider the Rényi Differential Privacy

framework. Formally, for some 𝛼 > 1 and 𝜖 , and any neighboring

private training datasets 𝑆 and 𝑆 ′ differing by one record, the output
distribution ofM satisfies 𝐷𝛼 (M(𝑆)∥M(𝑆 ′)) ≤ 𝜖 .

3.2 Motivation
The well-known approach to solve the optimization problem de-

fined as in Eq. (1) under the centralized setting is through gradient

perturbation [1, 62], i.e., DPSGD. DPSGD is built upon the clas-

sic stochastic gradient descent (i.e., SGD [14, 42, 59]) with two

modifications for privacy: clipping and noise injection. To be more

specific, at every iteration, the server first samples a subset of the

input private dataset; computes and clips each individual gradient

from the batch; injects Gaussian noise to the gradient sum; and

updates the model parameters using the noisy sum. Here the scale

of the random noise is roughly 𝑂 (𝑐
√
𝑇 ), where 𝑐 is the clipping

norm for the gradient and 𝑇 is the overall number of iterations.

Naively running DPSGD on the client side and letting the server

update the global model using the aggregate value of the noisy

gradient sums broadcast by the clients incurs a noise overhead

of

√
𝑁 (𝑁 is the number of clients), compared to the centralized

setting. Integer-valued DP noise [3, 4, 40] with SecAgg [12] closes
this gap by exploiting the security property of SecAgg, as we have
mentioned in Section 2.2. However, gradient perturbation under

the distributed setting incurs excessive communication costs due

to frequent gradient sharing among the clients and the server, es-

pecially for edge devices and MPC protocols. In addition, from a

practical perspective, a larger number of communications rounds

also possibly lead to larger privacy risks, such as eavesdropping,

as we have mentioned in Section 1. In this paper, we address the

issue of communication costs for learning a DP LR model under

the distributed setting.

Chen et al. [19] propose RSGD-AR to solve LR with DP under the

centralized setting. The underlying learning algorithm of RSGD-AR
is close to the classic mini-batch gradient descent algorithm [14, 42,

59]. Their paper show that, the final model parameters of RSGD-AR
have bounded sensitivity through careful analysis that exploits the

smoothness and strong convexity of the loss function of LR. Hence,

directly injecting random noise to the parameters guarantees DP,

as shown in [19]. We refer interested readers to [9, 19, 32, 64]

for further details on how to utilize the smoothness and strong

convexity conditions for privacy analysis.

Based on RSGD-AR, we propose a communication-efficient so-

lution for learning a private logistic regression model under the

distributed setting. The idea is to let each client independently

run the non-private version of RSGD-AR on her local data parti-

tion, and use Skellam noise [3] to perturb her local model and use

SecAgg [12] to aggregate the perturbed models. Similar to previous

approaches [3, 4, 40], SecAgg amplifies the privacy guarantee for

each private training data item. In the meantime, compared with

gradient perturbation under the distributed setting, our solution
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Algorithm 1: Sk-RSGD-AR
Input: Initial model weights 𝑤 ∈ R𝑑 ; input dataset

𝑆 = (𝑆1, . . . , 𝑆𝑁 ) ; number of local update epochs𝑇𝑙 ; local

step size 𝜂𝑙 ; number of local mini-batches𝑚; scale

parameter 𝛾 ; bias parameter 𝛽 ; noise parameter 𝜆.

1 The server shares the initial model weights 𝑤 to all clients.

2 for 𝑖 ∈ 1 . . . 𝑁 do
3 𝑤𝑖 ← Algorithm 2(𝑆𝑖 , 𝑤,𝑇𝑙 , 𝜂𝑙 ,𝑚, 𝜏 ) . // local update
4 𝑣𝑖 ← 𝑤𝑖 − 𝑤. // compute the local model change.

5 𝑣∗
𝑖
← Algorithm 3(𝑣𝑖 , 𝛾, 𝛽 ) . // discretization.

6 𝑣̃𝑖 ← 𝑣∗
𝑖
+ Sk

𝑑 (𝜆) . // perturbation.

7 𝑣 ← SecAgg({ 𝑣̃𝑖 }𝑖∈ [𝑁 ] ) . // secure aggregation

8 𝑣 ← 1

𝛾
· 𝑣. // sum retrieval by the server

9 𝑤 ← 𝑤 + 𝑣/𝑁 . // model update

Output: 𝑤 model learnt on 𝑆 .

Algorithm 2: Client Procedure for Local Update
Input: Input dataset 𝑆𝑖 = ( (𝑥1, 𝑦1 ), . . . , (𝑥𝑛, 𝑦𝑛 ) ) ; initial model

weights 𝑤0; number of epochs𝑇 ; initial step size 𝜂0;

number of mini-batches𝑚; averaging interval 𝜏 .

1 Randomly permute the dataset 𝑆𝑖 .

2 Construct mini-batches 𝐵1, . . . , 𝐵𝑚 of equal size |𝐵 | .
3 𝑡 ← 0, ℎ ← 0.

4 for 𝑠 ∈ 1 . . .𝑇 do
5 ℎ ← ℎ + 1.

6 𝜂 ← 𝜂0/ℎ.
7 for 𝑗 ∈ 1 . . .𝑚 do
8 𝑡 ← 𝑡 + 1.

9 𝑔← 1

|𝐵 𝑗 |
∑

𝑖∈𝐵 𝑗
∇𝑓 (𝑤,𝑥𝑖 ) .

10 𝑤𝑡 ← 𝑤𝑡−1 − 𝜂𝑔
11 if 𝑠 mod 𝜏 = 0 then
12 𝑤𝑡 ← 1

𝑚𝜏

∑𝑚𝜏−1

𝑘=0
𝑤𝑡−𝑘 . // Averaging

13 ℎ ← 0. // step size reset

14 𝑡 ← 𝑡 + 1

Output: 𝑤 model learnt on 𝑆𝑖 .

Algorithm 3: Client Procedure for Discretization
Input: Local model change 𝑣𝑖 ; scale ratio 𝛾 ; bias parameter 𝛽 .

1 𝑣𝑖 ← 𝛾 · 𝑣𝑖 . // scaling

2 repeat
3 Let 𝑣∗

𝑖
be the stochastic rounded result of 𝑣𝑖 . Namely

E[𝑣∗
𝑖
] = 𝑣𝑖 , and ∥𝑣∗𝑖 − 𝑣𝑖 ∥∞ ≤ 1.

4 until ∥𝑣∗
𝑖
− 𝑣𝑖 ∥2 ≤ 𝛽 ·

√
𝑑

Output: 𝑣∗
𝑖
∈ Z𝑑 for noise injection.

significantly reduces the communication cost. This is because, in

our solution, the clients participate in the secure aggregation pro-

tocol only once after the end of local training processes. We call

our solution Sk-RSGD-AR, introduced in detail next.

4 OUR SOLUTION
We present our solution Sk-RSGD-AR for logistic regression with

differential privacy under the distributed setting, outlined as in

Algorithm 1. We first give an overview of our solution. At the very

beginning, the server first shares the initial model weights to all

clients (Line 1 in Algorithm 1). Each client performs local model

update using Algorithm 2 for𝑇𝑙 local epochs (Line 3 in Algorithm 1).

and computes the local model change (Line 4 in Algorithm 1). After

this, the client discretizes the local model change using Algorithm 3

(Line 5 in Algorithm 1), to set up the stage for integer-valued noise

injection and SecAgg (explained in more details next). After dis-

cretization, each client then independently perturbs the discretized

change with a 𝑑-dimensional Skellam noise Sk
𝑑 (𝜆) (Line 6 in Al-

gorithm 1). After all clients have done the perturbation, they col-

lectively participate in SecAgg to aggregate their perturbed model

changes in a secure manner (Line 7 in Algorithm 1). Upon receiving

the output of SecAgg, the server reconstructs the aggregate model

change (Line 8 in Algorithm 1) and updates the model weights

accordingly (Line 9 in Algorithm 1).

Algorithm 2 is the non-DP version of RSGD-AR in [19], and

we refer interested readers to the original paper for its detailed

algorithmic description. Roughly speaking, the algorithm first ran-

domly permutes the input dataset and then partitions the dataset

into𝑚 batches, and then repeatedly uses these batches for com-

puting the gradient mean and updates the model accordingly. In

addition, after every 𝜏 epochs, RSGD-AR performs an averaging

over all model parameters from the previous 𝜏 epochs. Note that the

random permutation step at the beginning improves over the worst-

case sensitivity analysis, as mentioned in [19]. Roughly speaking,

this is because the differing record between two neighboring input

datasets could locate in the first batch, causing a smaller influence

on the final model parameters, compared to the case when the

record is located in the last batch. This step also adds technicality

to our privacy analysis, as we will see in Section 4.1

Next, we explain the discretization process (see Algorithm 3) for

the change of local model weights in more detail, which sets up the

stage for integer-valued noise injection, as the general real-valued

private information (i.e., model parameters) and real-valued noise

(e.g., continuous Gaussian noise) are not directly compatible with

SecAgg, which is based on secure multiparty computation (MPC).

The client scales the input vector by 𝛾 . Intuitively, a larger 𝛾 means

finer quantization granularity and requires larger random noise to

preserve privacy (since scaling increases the L2 norm by a factor

of 𝛾 ), and vice versa.

The client then repeats the same stochastic rounding process on

the scaled vector (Line 3 in Algorithm 3) until its discretized version

satisfies a certain condition. Here the stochastic rounding process

rounds a value in form 𝑋 + 𝑌 , where 𝑋 is the integer part and 𝑌

is the fractional part, to 𝑋 + 1 with probability 𝑌 , and to 𝑋 with

probability (1−𝑌 ). For example, 1.85 is rounded to 2with probability

0.85, and to 1 with probability 0.15. The condition specifies the L2

distance between the original vector and its discretized version,

which restricts the sensitivity overhead due to stochastic rounding

to a pre-fixed value quantified by 𝛽 ∈ (0, 1). This condition basically
requires that at most 𝛽 fraction of the values in the vector cause a

sensitivity increase in their dimensions (e.g. when −1.1 is rounded

to −2, or when 2.9 is rounded to 3). Intuitively, the parameter 𝛽

controls the variance-bias trade-off. A smaller 𝛽 means more bias,

since more rounded results would not satisfy the condition, but also
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smaller variance due to DP noise, since less sensitivity overhead

is introduced. In particular, the conditional rounding process may

never stop when 𝛽 = 0, since all rounded results are rejected; and

the process degenerates to the unconditional stochastic rounding

process when 𝛽 = 1.

Remark. We emphasize that since we use Skellam noise as the

additive DP noise on the client side, Sk-RSGD-AR enjoys the nice

privacy amplification property of distributed-DP (as we will see

in the privacy analysis in Section 4.1). In addition, our solution

Sk-RSGD-AR incurs low communication costs since all clients need

only communicate once, i.e., participating in SecAgg to securely

share the sum of their perturbed local model changes to the server,

at the very end of the training process.

Random rotation. Note that before the clients perform the round-

ing step on their local sides (Line 2 in Algorithm 3) , they have

the option to first randomly rotate the local model change with a

randomWalsh-Hadarmard transform (random rotation), which pre-

serves the L2 sensitivity of the local model change (hence, privacy

is not affected) while evenly distributing the signal to all dimen-

sions [36, 40, 65]. Accordingly, the server needs to reverse such a

transform after obtaining the outcome from SecAgg (Line 8 in Al-

gorithm 1). This random rotation step is a classic trick for reducing

communication bandwidth, as it evenly distributes the signal to

all dimensions. But this trick does not affect the main algorithmic

component of our solution, which is to reduce the number of com-

munication rounds from thousands to only one. In our experiments,

we simply fix the number of bits per dimension to 8 (which is al-

ready very small), and we have observed no significant difference in

terms of model utility with/without such random rotation. We refer

interested readers to [40] for a detailed discussion of randomized

rotation and conditional rounding processes.

4.1 Privacy Analysis
We first present the privacy analysis of Sk-RSGD-AR when ex-

actly one client participates in the process. To do this, we need to

first reason the sensitivity of Algorithm 2 on the client side. With-

out loss of generality we consider any two neighboring datasets

𝐷 = {𝑟1, 𝑟2, . . . , 𝑟𝑛−1, 𝑟𝑛} and 𝐷′ = {𝑟1, 𝑟2, . . . , 𝑟𝑛−1, 𝑟
′
𝑛}, whose dif-

fering records are 𝑟𝑛 and 𝑟 ′𝑛 . Recall that Algorithm 2 first randomly

permutes the input dataset before partitioning, which is equiva-

lent to random partitioning. Hence, when we fix the partitioning

of the first 𝑛 − 1 records in 𝐷 and 𝐷′, the differing two records

could be in any one of the𝑚 batches, with equal probability 1/𝑚.

Accordingly, the sensitivity of the local model change (due to the

differing records) also has𝑚 equal possibilities of 1/𝑚. In particular,

the largest sensitivity corresponds to the case when the differing

records are in the last batch and the smallest sensitivity corresponds

to the case when they are in the first batch.

Chen et al. [19] provide a tractable way for calculating each pos-

sible L2 sensitivity, outlined in Algorithm 4. Note that the output

of the Algorithm 4 is also an array, where the 𝑗-th entry (i.e., ∆[ 𝑗],
𝑗 = 1, . . . ,𝑚) of the output array ∆ of length𝑚 corresponds to the

L2 sensitivity of local model change when the differing records are

in the 𝑗-th batch. We refer interested readers to [19] for detailed

proof of the correctness of the algorithm.

Algorithm 4: Sensitivity Computation for RSGD-AR
Input: loss function 𝑓 with convexity parameter 𝜇 and smoothness

parameter 𝐿; number of epochs𝑇 ; initial step size 𝜂0;

number of mini-batches𝑚; mini-batch size |𝐵 | .
1 for 𝑗 ∈ 1 . . .𝑚 do
2 ∆[ 𝑗 ] ← 0. // Initialization

3 for 𝑠 ∈ 1 . . .𝑇 do
4 𝜂 ← 𝜂0/𝑠 .
5 𝜌 ← max{ |1 − 𝜂𝜇 |, |1 − 𝜂𝐿 | }.
6 for 𝑗 ∈ 1 . . .𝑚 do
7 ∆[:] ← 𝜌∆[:]. // contraction for all

8 ∆[ 𝑗 ] ← ∆[ 𝑗 ] + 2𝜂𝑅

|𝐵 | . // expansion for current 𝑗

Output: ∆.

Without loss of generality we first focus on the case when the

differing records are located in the first batch. Accordingly, the L2

sensitivity after the discretization step is written as 𝛾∆[1] + 2𝛽 ·
√
𝑑 ,

by the fact that random Walsh-Hadamard transform preserves L2

norm of the vector and the triangle inequality. Formally, we denote

M [1]
dis
(𝐷) (M [1]

dis
(𝐷′), respectively) as the value of 𝑣∗

𝑖
of Algorithm 1

up to Line 5 after discretization step (𝑖 = 1 since there is only one

client), when the 𝑛-th record 𝑟𝑛 in 𝐷 (𝑟 ′𝑛 in 𝐷′, respectively) is
located in the first batch. Then we have that

∆∗
2
[1] ≜ ∥M [1]

dis
(𝐷) −M [1]

dis
(𝐷′)∥2 ≤ 𝛾∆[1] + 2𝛽

√
𝑑.

The corresponding L1 sensitivity is bounded by

∆∗
1
[1] ≤ min

(√
𝑑∆∗

2
[1], (∆∗

2
[1])2

)
.

Next, we study the divergence between the distributions of 𝑣𝑖 of

Algorithm 1 up to Line 6 after noise injection of Sk(𝜆), denoted as

𝐷𝛼 (M [1]
Sk(𝜆) (𝐷) ∥M

[1]
Sk(𝜆) (𝐷

′)), when the differing 𝑛-th record 𝑟𝑛

in 𝐷 and 𝑟 ′𝑛 in 𝐷′ are located in the first batch. Applying Lemma 2,

we have that

𝐷𝛼 (M [1]
Sk(𝜆) (𝐷) ∥M

[1]
Sk(𝜆) (𝐷

′)) ≤ 𝜖𝛼 (Δ∗2 [1],Δ
∗
1
[1], 𝜆),

where we define

𝜖𝛼 (Δ2,Δ1, 𝜆) ≜
𝛼 · Δ2

2

4𝜆
+min

(
(2𝛼 − 1)Δ2

2
+ 6Δ1

4𝜆2
,

3Δ1

4𝜆

)
. (3)

Next, we consider the general case when the differing record could

be in any of the 𝑚 batches. Towards that end, we first denote

M [ 𝑗 ] (𝐷) andM [ 𝑗 ] (𝐷′) as the output distributions of Algorithm 1

when the differing 𝑛-th record 𝑟𝑛 of 𝐷 and 𝑟 ′𝑛 of 𝐷′ are located

in the 𝑗-th batch, for 𝑗 = 1, . . . ,𝑚. Then we can seeM(𝐷) as a
mixture of𝑚 distributions, written asM(𝐷) = ∑𝑚

𝑗=1

1

𝑚 ·M
[ 𝑗 ] (𝐷) .

Namely, with probability 1/𝑚, the output distribution ofM(𝐷) is
the same asM [ 𝑗 ] (𝐷) for 𝑗 = 1, . . . ,𝑚. A similar expression also

holds forM(𝐷′). Chen et al.[19] have shown that

𝐷𝛼 (M(𝑆 ′) ∥M(𝑆)) ≤ log
©­«
𝑚∑︁
𝑗=1

1

𝑚
EM [ 𝑗 ] (𝑆 )

[(
M [ 𝑗 ] (𝑆 ′)
M [ 𝑗 ] (𝑆)

)𝛼 ]ª®¬ ,
(4)

which basically means that the Rényi divergence betweenM(𝐷)
andM(𝐷′) is the average (taken within logarithm) of the Rényi
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divergences betweenM [ 𝑗 ] (𝐷) andM [ 𝑗 ] (𝐷′) for all 𝑗 = 1, . . . ,𝑚.

We refer interested readers to the original paper of [19] for further

details (in their proof of Lemma 3). Combining Eq. (4) and the fact

that there is only one client and that post-processing preserves

privacy, we have

𝐷𝛼 (M(𝑆 ′) ∥M(𝑆))

≤ log
©­«
𝑚∑︁
𝑗=1

1

𝑚
· exp((𝛼 − 1) · 𝜖𝛼 (Δ∗2 [ 𝑗],Δ

∗
1
[ 𝑗], 𝜆))ª®¬ .

Next we consider the general case when there are 𝑁 clients. As

we have mentioned in Section 2.2, when using SecAgg [12] with

Skellam noise Sk(𝜆) injected on each client, the aggregate local

model change is effectively perturbed by Sk(𝑁𝜆). In addition, since

the differing record appears in exactly one of the 𝑁 partitions, the

above sensitivity analysis remains. Finally, we take the randomness

in permuting the first 𝑛 − 1 common records of 𝐷 and 𝐷′ into con-

sideration. Note that Rényi divergence is jointly quasi-convex [63],

which basically means that it suffices for us to consider the worst

case randomness in the permutation for the first 𝑛 − 1 common

records of 𝐷 and 𝐷′, which also has no effect on the sensitivity

analysis. Hence, we have the following privacy guarantee for Algo-

rithm 1.

Lemma 3. Algorithm 1 satisfies (𝛼, 𝜖)-RDP with

𝜖 = log
©­«
𝑚∑︁
𝑗=1

1

𝑚
· exp((𝛼 − 1) · 𝜖𝛼 (Δ∗2 [ 𝑗],Δ

∗
1
[ 𝑗], 𝑁𝜆))ª®¬ ,

where 𝜖𝛼 (Δ2,Δ1, 𝜆) is defined as in Eq. (3)

Challenge in combining Skellamwith RSGD-AR. The main

challenge in combining Skellam with RSGD-AR is that Skellam

noise assumes “worst-case” analysis due to discretization/rounding

while RSGD-AR explores the “average-case” sensitivity due to ran-

dom permutation. To be more specific, note that the condition used

for the conditional rounding step in previous work [40] is depen-

dent on the sensitivity of the original vector, which depends on

the randomness of permutation in our case. However, such infor-

mation can not be learnt by anyone, since no one knows which

record is the differing one for the neighboring dataset (recall that

the definition of DP holds for any neighboring inputs). In addition,

naively setting the condition to be dependent on ∆[1] even leads to

privacy violation, since the differing record may not be in the first

batch. Hence, we choose to use a condition that is independent of

the random permutation, and is only dependent on the dimension

of the data, simplifying the privacy analysis.

Advantage over the existing solution. First, we recall the

reason for combining integer-valued noise with SecAgg under FL

is to provide central-DP-like privacy guarantees rather than local

DP. However, SecAgg also introduces prohibitive communication

overhead, which is a major concern in FL, especially when run-

ning iterative algorithms (e.g., distributed SGD). To alleviate the

communication issue, Sk-RSGD-AR utilizes the smoothness and

convexity of the loss function LR, which enables direct compu-

tation for the parameter-space sensitivity of SGD, based on the

results from [19]. In Sk-RSGD-AR, clients only perturb their locally

trained model parameters and then securely aggregate the per-

turbed models only once, with provable DP guarantees. Compared

with Sk-SGD, our solution reduces the number of communication

rounds from thousands to only one while achieving a comparable

privacy-utility trade-off, as we will see in the next section.

Computation costs. At first sight, it seems that Sk-RSGD-AR
incurs extra computation costs during the training due to the dis-

cretization step. We would like to note that such computation costs

only incur once at the end of the FL process. Its competitor Sk-
SGD [3] requires such computation at every iteration of the training

process. Finally, we remark that the only overhead of Sk-RSGD-AR
compared with Sk-SGD is that Sk-RSGD-AR incurs extra mem-

ory costs on the clients for storing model parameters from past

iterations for averaging, which is affordable since LR models are

small.

5 EXPERIMENTS
We evaluate the performance of our proposed solution on four

datasets with different scales, Credit Approval, MAGIC Gamma
Telescope, Adult, and ACSIncome [24, 26, 35], which contain about

700 instances and 15 attributes, 20000 instances and 11 attributes,

50000 instances and 14 attributes, 500000 instances and 700 at-

tributes, respectively. For the ACSIncome dataset, we use the data

collected from the five states (corresponding to five clients), Cal-

ifornia, Texas, New York, Florida, and Michigan in the year 2017.

The original data of the five states contain different attributes and

we take their intersection. We randomly partition each dataset into

training/validation/test splits by 6 : 2 : 2. As for different attributes,

we normalize the numeric ones into [0, 1], and pre-process the

categorical attributes by one-hot embedding as in [19].

Baselines. We see DPSGD [1] and RSGD-AR [19] as the strong

baselines under the centralized setting. The details of the compared

algorithms are listed as follows.

• Non-dp baseline: The non-dp baseline (SGD) randomly sam-

ples a batch of records from the input dataset and performs

gradient updates on the sampled batch. The algorithm is

repeated until convergence.

• DPSGD: DPSGD [1] is essentially similar to the non-dp base-

line, except that before updating the model parameters, we

first perturb the gradient sum with additive Gaussian noise.

Accordingly, the model parameters are updated using the

perturbed gradient.

• RSGD-AR: The main difference between RSGD-AR [19] and

DPSGD [1] is that in RSGD-AR, we only inject randomGauss-

ian noise into the final model parameters. As we have men-

tioned, RSGD-AR also achieves DP, by exploiting the convex-

ity and smoothness condition of the loss function of LR. Here

we regard both DPSGD and RSGD-AR under the centralized

setting as the strong baselines.

• Sk-SGD: Sk-SGD can be seen as the distributed version of

DPSGD. The difference is that clients inject symmetric Skel-

lam noise into their local gradients and use SecAgg to ag-

gregate the noisy gradients. The server then uses the aggre-

gate noisy gradient to update the model parameters. Note

that the original Sk-SGD was proposed in the distributed

DP literature, which focuses on client-level DP instead of
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Figure 1: Test accuracy for multiple datasets under varying privacy parameter 𝜖, with 𝛿 fixed to 10
−8.
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Figure 2: Test accuracy of our solution Sk-RSGD-ARwith vary-
ing number of clients 𝑁 .
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Figure 3: Number of communication rounds to achieve target
test accuracy on Adult under varying 𝜖.

record/item-level DP. Here we adopt their algorithm into

our setting, which focuses on record/item-level DP. We see

Sk-SGD [3] as our competitor under the distributed setting.

Hyper-parameters. For the relatively small datasets Credit Ap-
proval and MAGIC Gamma Telescope, we assume there are 5 and 10

clients, respectively. For Adult, we assume there are 20 clients. Un-

der the distributed setting, the clients partition the training dataset

uniformly at random. For ACSIncome, we assume there are 5 clients

(corresponding to 5 states), as we have mentioned. We would like

to mention that we did not tune the hyperparameters in favor of

any algorithms reported in this work. For all algorithms, we fix the

L2 clipping norm for an individual gradient to 1 and the weight

decay of the loss function to 0.001. For both Sk-SGD and Sk-RSGD-

AR, the server’s learning rate is fixed at 1. For DPSGD (resp. its

distributed version Sk-SGD), we fix the learning rate (resp. local

learning rate) to 0.1. For DPSGD, Sk-SGD, and our solution, we fix

the subsampling rate to 0.0034 at every SGD iteration. We vary the

privacy parameter 𝜖 from {0.08, 0.16, 0.32, 0.64, 1.28} and fix 𝛿 to

10
−8
, and report the average test accuracy for each setting over 10

runs.
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Figure 4: Test accuracy for ACSIncome with non-equal parti-
tions.

Figure 1 shows the comparison between Sk-RSGD-AR with other

baselines in different datasets. As stated above, we take the perfor-

mance of the baselines in centralized setting, non-dp, DPSGD and

RSGD-AR as our ground truth. We observe that with increasing

privacy budget 𝜖 , the gap between ground truth and baselines in

distributed setting narrows, and Sk-RSGD-AR achieves compara-

ble performance with the the competitor Sk-SGD, but with fewer

communication costs. In Figure 1, when the privacy budget 𝜖 is

sufficient, compared with the non-dp, DPSGD, and RSGD-AR in

centralized setting Sk-RSGD-AR only incurs 1%-3% drop in test

accuracy.

As for communication costs, we also plot the number of commu-

nication rounds to achieve a given test accuracy for Adult dataset
in Figure 3. We can see that Sk-RSGD-AR takes only one round of

communication to achieve a test accuracy of 82.5% under 𝜖 = 1.28,

whereas for Sk-SGD, the number of communication rounds in-

creases (up to 2690) as the target test-accuracy increases under

different privacy parameters. This is because Sk-RSGD-AR is based

on output perturbation, and all clients communicate only once at

the very end of the training process, as we have mentioned in Sec-

tion 4. We omit the results on other datasets as Sk-RSGD-AR takes

only one round of communication, regardless of the input.

Effect of varying 𝑁 . For MAGIC Gamma Telescope and Adult, we
also test the effectiveness of our solution with varying numbers of

clients from 1 to 40 under different settings of 𝜖 and report the av-

erage test accuracy over ten runs. In particular, 𝑁 = 1 corresponds

to the centralized setting. The results are shown in Figure 2. When

the number of clients is larger than 20 in Adult, the performance

declines due to the fact that models trained on small local dataset

portions do not converge. While in MAGIC Gamma Telescope, the
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test accuracy is much more sensitive, and declines at the very be-

ginning. As for different privacy budgets, Sk-RSGD-AR with larger

𝜖 is much more robust.

Partition of the dataset. In our experiments, we have assumed

that there are an equal number of private data samples for all

clients. Such an assumption is commonly used in the experiments

of FL [49, 50].We are aware that such an assumptionmay not hold in

practice. Given those circumstances, we require each client to first

scale her model parameters before perturbation and aggregation.

The scale ratio for each client is based on her portion of the entire

dataset. This pre-processing step is to make sure that each client

contributes to the global model with weights proportional to her

number of data samples. Note that with such scaling, the level of

privacy guarantee for the individual records of different clients may

be different. In particular, the clients with the smallest numbers

of records preserve the highest level (smallest 𝜖) of DP for their

records. We report the test accuracy on ACSIncome with non-equal

partitions in Figure 4. The reported level of 𝜖 for our solution is

computed for the client with the largest number of records (i.e.,

California). We note that even under such an unfair setting, Sk-

RSGD-AR still outperforms its competitor Sk-SGD by a largemargin.

We have open-sourced our implementation in https://github.com/

DavdGao/FLDP.

6 RELATEDWORKS
Differentially private federated learning. We review the dif-

ferentially private federated learning literature next. [6] propose

a random check-in distributed protocol and show that random

participation made on the client side improves the privacy guaran-

tee. [50, 58] train large-scale models under the distributed setting

with formal DP guarantees. [11] build a system for FL. [39] also

study the privacy-preserving Empirical Risk Minimization problem

under the distributed setting. Different from our approach, they

use continuous additive noise to enforce DP. Note that continuous

noise is not directly compatible with MPC or SecAgg, which op-

erate on finite integer domains. Hence, the methods from [39] are

not directly comparable with our method. Differentially private FL

with one-shot communication is also studied in [45, 57, 67] with

the assumption of access to an unlabeled public dataset. In con-

trast, our target problem is fundamentally different from theirs. In

our setting, we consider every training data sample used to obtain

the final model as sensitive information and hence, provide a DP

guarantee for it. Indeed, publicly accessible data could improve the

performance of a DP model. But we would also like to point out

that having accessible unlabeled public datasets might not be the

appropriate assumption in our problem setting. In application fields

such as governmental collaboration, health care, and finance, even

unlabeled data is hardly accessible to the public as the unlabeled

data still contains a significant amount of sensitive information for

an individual. We refer readers to [56] for a survey in FL with DP.

Output perturbation v.s. gradient perturbation. Two main ap-

proaches used for logistic regression (and also general ML applica-

tions) are output perturbation [19] and gradient perturbation [1, 62].

The idea of gradient perturbation is to inject noise into the gradi-

ents of the gradient descent algorithm, to guarantee that the release

of the noisy gradients is DP in every iteration. The overall privacy

guarantee follows from the composition theorem for differential

privacy. Output perturbation, on the other hand, injects DP noise

directly into the final output of an algorithm. The focus of this

paper is on logistic regression, which has a smooth and convex loss

function that eases the sensitivity analysis. Accordingly, in the cen-

tralized setting, it has been shown that output perturbation leads

to better privacy-utility trade-offs than gradient perturbation [19].

However, unlike gradient perturbation, output perturbation has

fewer applications as the sensitivity of the output of an algorithm

can not always be computed easily.

Besides the aforementioned gradient perturbation [1, 62] and

output perturbation [19], objective perturbation [18] directly injects

real-valued noise to the objective in Eq. (1). The trusted server then

solves the perturbed optimization problem. They show that the

optimal solution to the perturbed objective satisfies DP. However, it

is difficult to adapt objective perturbation to distributed DP settings,

since under distributed DP no one can be trusted with the perturbed

objective function, which still contains sensitive information of the

private dataset. We also note that the recent work [21] provides

tighter analyses for gradient perturbation techniques under the cen-

tralized setting. Similar to objective perturbation, however, their

analysis is not directly applicable to the distributed DP setting.

Adapting both objective perturbation and the advanced analysis

for DPSGD to the distributed setting is a promising future work

direction. We are also aware there are other techniques in the pri-

vacy and learning literature to reduce communication costs, such

as [2, 13, 20, 43, 60]. Our mechanism incurs low communication

costs in the sense that it only requires one round of communica-

tion. Further combining these techniques with our solution is a

promising future work direction.

7 CONCLUSION
In this work, we propose Sk-RSGD-AR, a communication efficient

and differentially private solution for logistic regression under the

distributed setting. Sk-RSGD-AR extends the original output pertur-

bation technique [19] from the centralized setting to the distributed

setting. Comparedwith the baseline solution, Sk-RSGD-AR achieves

comparable privacy-utility trade-offs (if not better) on multiple real-

world datasets under a variety of parameter settings. In addition,

Sk-RSGD-AR incurs a much lower communication cost than the

existing solution, which we believe is of great importance in the

applications of FL. Regarding future work, we plan to further reduce

the communication cost of differentially private federated learning

by incorporating dimensionality reduction techniques. In addition,

practical threat models that include malicious participants in FL,

and FL applications for vertically partitioned databases are also

promising research directions that are worth looking into.
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