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Abstract
Differentially private zeroth-order optimization (DPZero in
short) has shown promise in fine-tuning large language mod-
els (LLMs) while protecting record-level privacy. Compared
with classical first-order methods, such as DPSGD, the main
difference is that DPZero replaces the exact first-order gradi-
ents that are computed via back-propagation with its random
zeroth-order approximations that are computed via querying
the model’s losses. However, DPZero still lags in the resulting
model utility compared to existing methods, indicating that
further work is needed to fully realize its potential.

In this paper, we make a solid step towards designing a
better differentially private algorithm for fine-tuning LLMs
based on zeroth-order optimization. Our design is centered
around the major performance issue of differentially private
optimization for large models caused by artificial clipping,
which creates biases in the model updates. Using our method
called DP-AggZO, we theoretically prove that this issue can be
mitigated, leading to an improved convergence rate over the
prior DPZero methods and better model utility under the same
privacy constraints. We back up our theory with extensive
experiments, validating the performance improvement of DP-
AggZO. Surprisingly, our DP-AggZO even outperforms the
state-of-the-art method DP-AdamW significantly on some
benchmark settings.

1 Introduction

Despite the success of large language models (LLMs) in di-
verse tasks (e.g., see [7,15,26,29,43,46,47,75,100]), there are
growing concerns regarding the security of LLMs, particularly
in terms of preventing potential misuse [9,103,107], detecting
machine-generated texts [48, 55, 80], and mitigating demo-
graphical biases in generated content [95]. In addition, since
LLMs are built upon large-scale neural networks, they also
inherit the security and privacy risks inherent to large models,
including vulnerabilities in robustness [112], data/model poi-
soning [20,40,86,87], backdoor injections [8,11,67,74,117],

data/model extraction [22, 25, 53, 76, 99], membership in-
ference attacks [21, 62, 73, 88, 91, 109], and data memoriza-
tion [23, 90].

In this work, we address the data privacy aspect of LLMs,
which has received increasing attention from both the research
community and governmental agencies (e.g., see reports on
data protection for LLMs [56] and ChatGPT [13]). Notably,
LLMs are known to be vulnerable to membership inference
attacks [57] and data extraction attacks (both in the lab [24]
and in production [72]), leaking personally identifiable infor-
mation [23,66] from the training dataset and violating privacy
regulations GDPR [49] and CCPA [45].

Our goal is to provide an efficient and effective algorithm
for fine-tuning LLMs while respecting record-level privacy,
preventing an adversary from inferring the membership or
reconstructing a data point from the fine-tuning dataset. To
achieve this, we adopt differential privacy (DP) [38], a well-
established privacy framework that provides provable protec-
tion against membership inference and data reconstruction
attacks [24, 34, 72, 88]. DP has been applied to safeguarding
data privacy in deep learning [1, 32, 102, 105, 106] and, more
recently, to both training LLMs from scratch and fine-tuning
LLMs on specific tasks [6, 59, 97, 110].

The general idea of DP is to obfuscate the contribution of
an individual record in the result released to the adversary,
via random noise injection (see Section 2.1 for details). In
particular, to achieve a designated level of privacy, the scale of
the injected noise must be proportional to the maximum con-
tribution of an individual record to the algorithm’s output [38].
In this way, the adversary cannot infer with high confidence
the presence or absence of any particular record in the input
dataset, thereby ensuring record-level privacy. However, im-
plementing this idea in the training or fine-tuning process
of neural networks is not straightforward, as it is challeng-
ing to analytically quantify the maximum contribution of a
record to the output of the training/fine-tuning process — i.e.,
the final model parameters — due to the complex nature of
general neural networks. On the other hand, an inappropriate
selection for the scale of injected noise leads to unsatisfactory



privacy-utility trade-offs: if the noise is much larger than the
actual contribution made by an individual record, the model’s
utility is sacrificed due to the overwhelmingly large noise;
otherwise, if the scale of the noise is much smaller than the
individual contribution, privacy is at risk.

DPSGD [1] resolves the above challenge as follows. First,
instead of quantifying the overall contribution of an individual
record to the final model parameters, DPSGD quantifies its
contribution to the gradient sum obtained at each iteration,
i.e., the individual gradient, which is used for model updates.
However, due to the complex nature of the loss functions and
the models, this process is still not straightforward. This is
where artificial clipping comes into play. Specifically, each in-
dividual gradient corresponding to a training record is clipped
to a predefined range: if the L2 norm of the gradient exceeds a
predefined constant c, the gradient is rescaled to have a norm
of c; otherwise, it remains unchanged. After clipping each
individual gradient, independent random Gaussian noise is in-
jected into each dimension of the sum of the clipped gradients
and the scale of the noise (namely, the standard deviation of
the Gaussian noise) is proportional to the clipping threshold c
to ensure DP, preventing adversaries from inferring the train-
ing data [111]. Finally, the model is updated according to the
estimated gradient average from the noisy gradient sum, and
this process is repeated for T iterations. Note that the privacy
reasoning of DPSGD is based on the noisy gradient sum in
each model update rather than the final model parameters. As-
suming that the adversary observes such statistics and knows
the algorithm as public information, then he could compute
the model parameters by himself without incurring additional
privacy costs. Indeed, this analysis assumes nothing about the
model architecture and the loss function and has been widely
used for deep learning with DP (we refer interested readers to,
e.g., [28, 41], for more delicate analyses tailored to specific
model architectures and loss functions).

Akin to its non-DP version Mini-batch SGD, fine-tuning
models, especially language models, with DPSGD con-
sumes large computational resources (compared with query-
ing/inference with the models), due to the backpropagation
required to compute individual gradients. In particular, even
for medium- to small-sized open-source models, such as OPT-
6.7B [115], the gradient computation exceeds the memory
capabilities of high-end GPUs such as the H100 with 80GB
of RAM. This limitation also imposes additional challenges
for preserving data privacy, explained as follows. Imagine
that a small research team would like to release a model
fine-tuned on their sensitive data under differential privacy
for public usage. However, due to the lack of computational
resources, the fine-tuning process has to be outsourced to
untrusted cloud service providers, during which the sensitive
data could be exposed. Such constraints create significant bar-
riers for researchers, preventing them from safely fine-tuning
and sharing models based on sensitive data, limiting broader
access to their work. Recent advances in memory-efficient

DP fine-tuning techniques, such as DP-LoRA and DP-Prefix
Tuning [59, 110], have aimed to address these limitations.

Memory-efficient Zeroth-order optimization (MeZO), origi-
nating from control theory [39,92], has recently demonstrated
promising performance in fine-tuning large language mod-
els [68] while incurring only a small memory overhead com-
pared to model querying. The overall idea of MeZO [68] is
to replace the exact first-order gradients that are costly to
compute in SGD [85] with its random zeroth-order approxi-
mations that can be computed by querying the model’s losses
in some neighborhoods. Given that evaluating the losses is
often less computationally intensive than computing the gra-
dient, zeroth-order optimization imposes fewer constraints
on the computation resources. This improvement is particu-
larly critical for fine-tuning large language models, where the
model itself consumes a significant amount of GPU memory,
not to mention the computation of its gradients (the latter
sometimes requires around ×12 more memory than querying
the model, as reported in [68]).

Perhaps due to this reason, since the release of MeZO [68],
it has been quickly adopted by the differential privacy (DP)
literature–several differentially private zeroth-order optimiza-
tion methods have been proposed. The original DP-version
of the Zeroth-order algorithm was named DPZero in the
workshop version of [113]. Variants of DPZero were later
studied in [63, 96]. Inherited from MeZO, DPZero methods
requires far less memory compared with DPSGD when fine-
tuning large models. While the initial results of DPZero show
promise, there remain a few noticeable utility gaps between
DPZero and traditional first-order methods in certain bench-
mark settings, indicating that further work is needed to unlock
their full potential.

In summary, memory consumption and data privacy are
critical considerations when fine-tuning large language mod-
els. On the one hand, DPSGD demonstrates promising per-
formance (i.e., measured as the model’s test accuracy/utility
under specific DP constraints) while incurring substantial
memory overhead compared with querying with the models,
creating barriers for researchers and practitioners with lim-
ited access to high-end hardware. On the other hand, while
DPZero methods demonstrate a significant reduction in terms
of memory requirements, their performance is still consider-
ably lower than the classic first-order state-of-the-art DPSGD.
The question then becomes: can we design more powerful
DPZero methods that achieve higher performance (i.e., better
privacy-utility trade-offs) without incurring significant mem-
ory overhead? We give a positive answer in this paper.

1.1 Our Contribution

In this paper, we take a solid step towards designing bet-
ter memory-efficient differentially private methods for fine-
tuning large language models based on the zeroth-order op-
timization (i.e., ZO). The core design of our approach, DP-



AggZO, is based on reducing the error introduced by artificial
clipping in differential privacy for zeroth-order optimization.
Toward that end, in Section 4, we first establish a quantita-
tive relationship between this clipping error and the model’s
convergence rate (which is also of independent interest), mo-
tivating our design. However, as is also observed in prior DP
algorithms, reducing the clipping error often increases the
error from additive DP noises, which does not guarantee util-
ity increase under same privacy constraints. Our DP-AggZO,
detailed in Section 5, resolves this challenge via algorithmic
level modifications to the original DPZero. Through rigorous
analysis, we prove that our DP-AggZO theoretically exhibits a
faster convergence rate than existing DPZero methods under
the same privacy constraints without requiring more GPU
memory.

We also conduct comprehensive experiments to validate the
performance of DP-AggZO in Section 6. Notably, when fine-
tuning the OPT-6.7B model, DPSGD fails to run on a 96-GB
GPU due to its large memory consumption, while our DP-
AggZO excels, offering a significant improvement over the
recent DPZero baseline in terms of privacy-utility trade-offs.
On the OPT-1.3B model, DP-AggZO matches, and in some
cases, surpasses the state-of-the-art DP-AdamW (i.e., DPSGD
with the Adam optimizer); and on RoBERTa (355M), DP-
AggZO outperforms the state-of-the-art DP-AdamW on all five
benchmark datasets. Overall, DP-AggZO consistently outper-
forms existing methods. Our work sets new benchmarks for
fine-tuning large language models under differential privacy
without creating barriers on hardware, enabling a wider audi-
ence (including those from under-resourced environments) to
benefit from privacy-preserving technology.

2 Preliminaries

Notations. We use D to denote the input dataset (i.e., the
dataset for fine-tuning an LLM) and use n = |D| to denote
the number of records in D . We use B to denote a batch (i.e.,
a subset of D). Given a differentiable loss function L : Rd×
X → R, we denote L(θθθ;x) and ∇L(θθθ;x) as the loss and the
first-order gradient computed on θθθ for record x, respectively.
We use ∥v∥ to denote the L2 norm of vector v.

2.1 Differential Privacy

We say that two datasets D1 and D2 are neighboring if one can
be obtained by adding or removing a record in the other, de-
noted as D1 ∼D2. Differential privacy (DP) [38] enforces an
upper bound on the distance between the output distributions
of a mechanism M on neighboring datasets.

Definition 1 (Differential Privacy [38]). A randomized mech-
anism M is (ε,δ)-differentially private if for any neighboring
datasets D1 and D2 that differ by one record, and any subset

O of the output domain of M, we have the following.

Pr[M(D1) ∈ O]≤ exp(ε) ·Pr[M(D2) ∈ O]+δ. (1)

Parameters ε and δ are referred to as the privacy constraints.
Smaller values of ε and δ make it more difficult to distinguish
the input (either D1 or its neighbor D2) from the output of M,
implying stronger privacy protections, and vice versa.

An alternative DP framework, Rényi differential privacy
(RDP or Rényi-DP) [70], built upon the concept of Rényi
divergence [84], is commonly used for analyzing iterative
algorithms, which are especially common for fine-tuning.

Definition 2 (RDP [70]). A randomized mechanism M sat-
isfies (α,ε)-RDP if for any neighboring datasets D1 and D2
that differ by one record, we have the following.

Dα(M(D1)∥M(D2))≤ ε, (2)

where Dα(P∥Q) represents the Rényi divergence between
probability distributions P and Q.

The canonical approach to turn a function F into its DP
version is by noise injection, where the scale of the noise is
calibrated to the sensitivity of the function, defined as follows.

Definition 3 (L2 sensitivity). The L2 sensitivity of a func-
tion F is defined as the maximum change caused by
adding/removing a record in the input.

S(F) = max
D1∼D2

∥F(D1)−F(D2)∥. (3)

Lemma 1 (Gaussian noise satisfies RDP [70]). Injecting
Gaussian noise N (0,σ2Id) to any d-dimensional function

with bounded L2 sensitivity ∆2 achieves
(

α,
α∆2

2
2σ2

)
-RDP.

Both RDP and (ε,δ)-DP are preserved under post-
processing, Further details of DP are in the technical report
version [12].

2.2 DPSGD for Fine-tuning
Given a differentiable loss function L , we aim to find the
optimal solution (i.e., model parameters) that minimizes the
overall loss over input dataset D, i.e., finding the solution to
argmin

θθθ∈Rd ∑x∈D L(θθθ;x).
Mini-batch SGD (non-DP). The standard non-DP approach,
mini-batch SGD, aims to solve the above optimization prob-
lem by iteratively refining its solution. In particular, at it-
eration t, a random subset of D is sampled to form a mini
batch Bt (say, using the Poisson sampling with sampling rate
q). Next, the gradient sum ∑x∈Bt ∇L(θθθt ;x) is computed over
records in Bt . With learning rate η, the current solution θθθt is
updated to θθθt+1 = θθθt− η

|Bt | ·∑x∈Bt ∇L(θθθt ;x). In the context of
fine-tuning a large language model (LLM), we can denote θ0,



i.e., the initial solution, as the parameters of the pre-trained
model, e.g., RoBERTa (355M) [61].
DPSGD. Roughly speaking, DPSGD [1] enforces differential
privacy over the computation for the gradient sum in mini-
batch SGD. DPSGD first enforces a bound on the L2 norm of
individual gradients through artificial clipping. In particular,
we are given a pre-fixed positive constant c, called the clipping
threshold: for each individual record’s gradient, if its norm
exceeds c, then it is rescaled to have a norm of c; otherwise,
it remains unchanged. The clipped gradient is

∇̂L(θθθt ;x) =
min(c,∥∇L(θθθt ;x)∥)
∥∇L(θθθt ;x)∥

∇L(θθθt ;x). (4)

Now that the sensitivity for the function of gradient sum is
bounded by c, we can enforce DP by perturbing the sum
of clipped gradients with a random noise sampled from
N (0,σ2

mc2Id). Here, σm is termed as the noise multiplier [71],
which is computed from the designated DP guarantee, the
number of iterations, and the subsampling rate for batches.
We note that σm is independent of c. The DP gradient sum is

Gdpsgd(θθθt ;Bt) =

(
∑

x∈Bt

∇̂L(θθθt ;x)

)
+N (0,σ2

mc2Id). (5)

The model is then updated according to Gdpsgd and this pro-
cess is repeated for some T iterations. We defer further details
on DP and DPSGD to technical report version [12].

In DPSGD, the memory consumption of computing the
model’s gradient via backpropagation is O(M2), where M
stands for the size of the largest layer in the model. This can
be prohibitive for large models and cause out-of-memory is-
sues on small GPUs. Parameter-efficient fine-tuning methods
such as DP-LoRA and DP-Prefix Tuning [59, 110] improve
the memory and computation costs of DPSGD while other
methods such as [17] optimize the computation of DPSGD
on specific model structures. While these methods improve
the efficiency of DPSGD, they do not lead to better utility of
the fine-tuned model under the same privacy constraints.

2.3 Zeroth-order Fine-tuning
Unlike first-order methods, zeroth-order optimization meth-
ods (ZO, in short) do not require gradient computation, e.g.,
see [39, 92]. Instead, ZO approximates the gradients using
differences of the loss function evaluated at points around θθθt ,
based on Taylor expansion.
MeZO (non-DP). Recent work MeZO [68] adapts this idea to
fine-tuning LLMs. In particular, for each record x, the gradient
∇L(θθθt ;x) is approximated as

L(θθθt +φz;x)−L(θθθt −φz;x)
2φ

· z≈ ∇L(θθθt ;x). (6)

Here φ, referred to as the perturbation scale, is some pre-fixed
positive constant, and z, referred to as the perturbation vector,
is sampled from N (0,Id).

To obtain the above result, given z and φ, we need to com-
pute the model’s loss difference in its neighborhood θθθt ±φz

∆z(θθθt ;x) =
L(θθθt +φz;x)−L(θθθt −φz;x)

2φ
, (7)

which is an approximation to the loss’s directional derivative
along z. The following proposition (can be proved using
Taylor’s theorem) roughly speaks for the convergence of ZO.

Proposition 1. Let z∼N (0,Id), then when φ→ 0, we have
E[∆z(θt ;x) · z] = ∇L(θt ;x),

In our later analysis for model’s convergence, we adopt the
assumption that E[∆z(θt ;x) · z] = ∇L(θt ;x), as is the conven-
tion in the literature (e.g., see [37, 68, 113, 114]). Finally, one
can also sample multiple vectors {zk}K

k=1 independently from
N (0,Id) and use 1

K ∑
K
k=1 ∆zk(θt ;x) · zk as the estimation for

∇L(θθθt ;x). According to [68], this variant of ZO does not lead
to performance improvement for non-DP fine-tuning when
the overall computation is fixed.
Differentially private ZO. To preserve DP, DPZero [96]
(referred to as DPZero afterwards) proceed as follows. First,
given z, for each record x in the sampled batch Bt , we clip the
scale of ∆z(θθθt ;x) with some threshold c, obtaining

∆̂z(θθθt ;x) =
min(c, |∆z(θθθt ;x)|)
|∆z(θθθt ;x)|

·∆z(θθθt ;x). (8)

With the pre-fixed noise multiplier σm, a one-dimensional
random Gaussian noise u ∼ N (0,σ2

mc2) is injected to the
sum ∑x∈Bt ∆̂z(θθθt ;x) to preserve the designated level of privacy.
Note that the vector z is seen as public information and does
not require privacy protection. The model is updated to

θθθt+1 = θθθt −η

(
∑x∈Bt ∆̂z(θθθt ;x)

)
+u

b
· z, (9)

where b is the targeted batch size. When using Poisson sam-
pling (see e.g., [30, 71]), the targeted batch size equals to qn
(where q stands for the sampling rate), which also reveals
information of D and hence, needs privacy protections. We
often replace b with qñ, where ñ stands for the DP estimate
for n. The result of ñ can be reused without incurring addi-
tional DP costs. The overall privacy cost (i.e., the privacy
parameters) for running DPZero for T iterations is the sum of
costs for releasing ñ for once and releasing the DP estimate
for ∑x∈Bt ∆̂z(θθθt ;x) in all T iterations (see the full version [12]
for more details).
Memory reduction. Compared with the first-order methods
mini-batch SGD and DPSGD, the memory reduction of zeroth-
order methods is significant, because only forward passes
are involved and there is no computation of gradients using
backpropagation (see [68] for more details). To get θt ±φz,
there is also no need to store the actual outcome of z ∈ Rd .
Instead, one could just store the random seed for generating



z and then iteratively sample particular dimensions of z for
each layer of the model and then apply the change in an
in-line manner. This process incurs a memory overhead of
O(M) only (where M stands for the size of the largest layer).
Without DP, MeZO [68] reports up to ×12 memory reduction
(measured as GB) compared with SGD, and DPZero [113]
reports around ×8 reduction of GPU memory compared with
DPSGD on the benchmarking model RoBERTa 355M [61].
Implications on data privacy. The memory reduction of
DPZero also enables data curators to fine-tune larger mod-
els on their sensitive data using (local) machines of limited
resources, instead of resorting to outsourced computation
such as cloud services (with larger GPUs), which, in turn,
may bring more challenges to safeguarding data privacy (e.g.,
see [81, 94]).

3 Problem Definition

Problem. We study the problem of fine-tuning large language
models (LLMs) with differential privacy. In particular, given
a pre-trained model with initial parameters θθθ0, dataset D , and
loss function L , we want to fine-tune the model to minimize
its loss computed over D, while respecting record-level dif-
ferential privacy. In addition, we would like to restrict the
optimization algorithm to querying the model’s losses only,
rather than computing the exact gradients via backpropaga-
tion, following prior work on zeroth-order optimization for
reducing the memory usage [63, 68, 96, 113].
Motivation. In the previous work [63, 96, 113], the differen-
tially private zeroth-order optimization method demonstrates
promising performance when fine-tuning LLMs. Despite that,
when compared with the state-of-the-art first-order method
DPSGD, the utility gap is notable. This brings us to this ques-
tion: can we further improve the performance of zeroth-order
optimization for fine-tuning LLMs with differential privacy?

In this work, we answer the above question positively.
Specifically, we proposed an improved algorithm for ZO fine-
tuning with DP. Overall, our method achieves a faster conver-
gence rate (in theory) and demonstrates empirical improve-
ment over prior methods (in practice) under the same privacy
constraints.

4 Motivation and Idea

In what follows, we first present a new convergence analysis
for DPZero [113]. Guided by the analysis, we introduce the
idea to our solution of differentially private zeroth-order fine-
tuning (detailed in Section 5).

4.1 Revisiting the Convergence of DPZero
Empirical observation. Existing analysis of DPZero often
assumes that the clipping error can be ignored (e.g., [113]). In
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Figure 1: The empirical distribution (histogram) of |∆z(θθθ;x)|
computed for RoBERTa (355M) on the MNLI dataset. Sample
values of ∆z(θθθ;x) are computed based on 512 perturbation
vectors that are independently sampled from N (0,Id). Here,
θθθ refers to the model checkpoint taken midway through fine-
tuning with DPZero. Using the suggested clipping thresholds
in [113] - e.g., 200, a significant portion of gradients will be
clipped. Similar patterns appear for other models (such as
OPT), model checkpoints, and datasets.

reality, however, this assumption breaks down under typical
settings. In particular, prior work [96,113] recommended clip-
ping thresholds such as c = 100 and 200. However, Figure 1
shows that the distribution of |∆z(θθθt ;x)| is heavily tailed. As a
result, a substantial fraction of samples exceed the suggested
threshold of c = 200 and are clipped. Namely, the actual clip-
ping error cannot be ignored, creating a gap between theory
and practice.
Our analysis. To our knowledge, no follow-up study on dif-
ferentially private zeroth-order fine-tuning (e.g. [63, 96]) has
yet addressed this mismatch. Now that the clipping error
cannot be ignored, we aim to quantify its impact on the con-
vergence rate. Without loss of generality, we focus on one
iteration t and fix the clipping threshold to c (with c > 0)
and the noise multiplier to σm. Recall Section 2.3. Given a
perturbation vector z ∈ Rd , DPZero first samples batch Bt of
records, computes the scalar ∆z(θθθt ;x) for each record x in Bt ,
and then applies artificial clipping to obtain ∆̂z(θθθt ;x). Next,
u∼N (0,σ2

mc2) is injected to ∑x∈Bt ∆̂z(θθθt ;x) and the model

is updated as θθθt+1 = θθθt −η

(
∑x∈Bt ∆̂z(θθθt ;x)

)
+u

b · z.
We use L(θθθt) and ∇L(θθθt) to denote the average loss and

gradients computed on all records in input dataset D. The
convergence rate, i.e., expected loss decrease, is expressed as
E[L(θθθt+1)|θθθt ]−L(θθθt). We would want this difference to be
negative when we update the model (i.e., the loss decreases).

We define the clipping error for the zeroth-order gradient



of record x, perturbation vector z, and model θθθt as

err(θθθt ,x,z) =
∆z(θθθt ;x)− ∆̂z(θθθt ;x)

∆z(θθθt ;x)
. (10)

Accordingly, the clipping error incurred in batch Bt is

err(θθθt ,Bt ,z) =
∑x∈Bt ∆z(θθθt ;x)−∑x∈Bt ∆̂z(θθθt ;x)

∑x∈Bt ∆z(θθθt ;x)
. (11)

We are ready to present the convergence rate for DPZero.

Lemma 2 (Convergence rate for DPZero). Assume that
∇2L(θθθt)⪯H where H⪯ l · Id and tr(H)/∥H∥op ≤ r. If the
model is updated as in equation 9, then we have

E[L(θθθt+1) |θθθt ]−L(θθθt)

≤−η · (1−E[err(θθθt ,Bt ,z)]) · ∥∇L(θθθt)∥2 (12)

+
√

3η ·E[(err(θθθt ,Bt ,z)2] ·E[∥∇L(θθθt ;x)∥2] (13)

+
η2lr

2
· c2 ·

(
1+σ

2
m
)
. (14)

To better understand Lemma 2, we compare it with the
convergence rate for non-DP zeroth-order fine-tuning. In par-
ticular, under the same assumptions as in Lemma 2, if the
model is updated as θθθt+1 = θθθt −η

∑x∈Bt ∆z(θθθ;x)
|Bt | · z, but without

artificial clipping and additive DP noises, then the expected
loss decrease can be bounded as

E[L(θθθt+1) |θθθt ]−L(θθθt)≤−η · ∥∇L(θθθt)∥2 (15)

+
η2lr

2
· ∥∇L(θθθt)∥2. (16)

Differences due to DP. Artificial clipping and the additive DP
noise cause the differences between the convergence rates of
non-DP and DP zeroth-order fine-tuning. In particular, com-
paring equation 12 with equation 15, we see that the clipping
error reduces the loss decrease of non-DP ZO by a factor of
1−E[err(θθθt ,Bt ,z)] while introducing another positive term
related to E[∥∇L(θθθt ;x)∥2], slowing down the convergence.
One benefit of artificial clipping is to prevent ∥∇L(θθθt)∥2

from being larger than c2 (comparing equation 14 with equa-
tion 16). This, however, comes with the price of clipping error,
which might slow down the overall convergence, as we have
mentioned above. In particular, consider the extreme case of
setting c = 0. In this case, the term η2lr

2 · c
2 · (1+σ2

m) dis-
appears while the model update is always 0, and we cannot
expect the model to converge. Finally, σ2

mc2 is the variance
of the additive DP noise (see equation 14), which may slow
down the model convergence.

Now we see a quantitative relationship between the clip-
ping error and the convergence rate. In particular, decreasing
the scale of the clipping error would in general increase the
scale of negative term in equation 12 while decreasing the

scale of the positive term in equation 13, improving the overall
convergence rate.

Lemma 2 is the first in the literature that connects the
clipping error to the convergence rate for DPZero. As we
have mentioned earlier, prior analyses assume that clipping
happens very rarely, limiting the real-world applicability. An
analysis that is similar to ours in the spirit was derived in a
different context - training deep neural networks from scratch
using first-order SGD with differential privacy [106] - which
does not apply to our problem. We defer the detailed proof
of Lemma 2 to the full technical report [12], where we have
adopted the low-effective rank assumption, a standard practice
for analyzing (large) language models [2, 44, 78, 108].

4.2 Motivation: Clipping Error Reduction

Before introducing the idea to improve the privacy-utility
trade-off of DPZero, we first highlight the technical challenge.
Challenge. As we can see from Lemma 2, to improve the
convergence rate of DPZero, the first thing that comes is to
reduce the clipping error. However, this can only be achieved
(so far) through setting a larger clipping threshold, i.e., a less
restrictive clipping strategy. In particular, if we set c = ∞, then
the clipping error becomes 0. However, as the additive DP
noise is proportional to the clipping threshold c, if we set c to
a larger value, the term η2lr

2 · (1+σ2
mc2) also becomes larger,

meaning that the error due to additive DP noises increases,
potentially slowing down the convergence.

The above discussion highlights the tension between the
clipping error and the additive noise: reducing one necessar-
ily increases the other. In the literature, this phenomenon is
commonly referred to as the bias-variance trade-off, which
has been studied in various domains (e.g., see [18, 106] for
deep learning applications, [3, 10, 35, 36] for database and
statistical queries, and [33, 54] for theory). Nonetheless, it
was not addressed in the context of fine-tuning LLMs with
DP. Here, our goal is to reduce the clipping error (i.e., bias)
without compromising for larger additive DP noises (i.e., vari-
ance). In what follows, we present our idea to solving this
problem.
Bounding err(θθθt ,x,z) from above. Our goal is to reduce the
clipping error without directly adjusting the clipping threshold
to larger values. It is difficult to directly work on the clipping
error with respect to the batch, i.e., err(θθθt ,Bt ,z), since we do
not know the distribution of records in the dataset. Instead, we
take a heuristic approach and try to reduce the clipping error
with respect to a record x, written as err(θθθt ,x,z) (recall its
definition from equation 10). The intuition is as follows. If we
can reduce err(θθθt ,x,z) to some small value, that means the val-
ues of ∆̂z(θθθt ;x) and ∆z(θθθt ;x) are close. As a consequence, by
taking the sum over all records from batch Bt , err(θθθt ,Bt ,z) is
also likely to be small. Still, err(θθθt ,x,z) depends on ∆z(θθθt ;x),
for which we also have very little knowledge. Instead, we try



to bound this value from above and then show how to reduce
this upper bound.

For any clipping threshold c> 0, the clipped result ∆̂z(θθθt ;x)
is always the original ∆z(θθθt ;x) times some scaling factor in

(0,1]. Hence, we have 1− |∆̂z(θθθt ;x)|
|∆z(θθθt ;x)| ≤

|∆z(θθθt ;x)|
|∆̂z(θθθt ;x)|

−1, and we can

show that the clipping error err(θθθt ,x,z) satisfies

err(θθθt ,x,z)≤
1
c
·E[|∆z(θθθt ;x)| ·1

{
|∆z(θθθt ;x)|> c

}
]. (17)

Applying the Cauchy-Schwarz inequality and Chebyshev’s
inequality for c2 > E

[
|∆z(θθθt ;x)|2, we can further bound

err(θθθt ,x,z)≤
E
[
|∆z(θθθt ;x)|2

]
c2 =

cov
[
∆z(θθθt ;x)

]
c2 , (18)

where we have used the law of total variance and the fact
that ∆z(θθθt ;x) is of mean 0 on z randomly sampled from the
Gaussian distribution.

4.3 Idea: Aggregating ZO Estimates
Now we are ready to introduce our idea for improving DPZero.
The key is to reduce cov

[
∆z(θθθt ;x)], the deviation of ∆z(θθθt ;x)

each x.
To illustrate the idea, we focus on one specific iteration

t without loss of generality. For each record x, instead of
computing a single estimate for the gradient ∇L(θθθt ;x) using
z ∼ N (0,Id), we query the model’s losses on multiple z’s
and use the aggregate of the zeroth-order estimates as the
approximation for the exact gradient. In particular, we first
independently sample a set of K (with K > 1) random vec-
tors from the distribution N (0,Id). We denote the vectors as
{zk}K

k=1. Next, for each sampled record, we compute

∆zk(θθθt ;x) :=
L(θθθt +φzk;x)−L(θθθt −φzk;x)

2φ
, (19)

for all k = 1, . . . ,K. Based on Proposition 1, each ∆zk(θθθt ;x) ·zk
is an unbiased estimate for the true gradient. Hence, their
aggregate average, expressed as 1

K ∑
K
k=1 ∆zk(θθθt ;x) · zk, is an

unbiased estimate for the true gradient ∇L(θθθt ;x). We enforce
differential privacy on this statistic.
Clipping the aggregate vector. Similar to DPZero, we see the
random perturbation vectors {zk}K

k=1 as public information.
We focus on the K-dimensional aggregate vector

∆∆∆agg(θθθt ;x) =
1
K
(∆z1(θθθt ;x),∆z2(θθθt ;x), . . . ,∆zK (θθθt ;x)). (20)

Each dimension independently follows the same distribution.
The standard deviation of the norm of this K-dimensional ag-
gregate vector is

√
K times smaller than the standard deviation

of original ∆z(θθθt ;x) computed on a single perturbation vector.
As a result, it now becomes easier to clip the individual ag-
gregate vectors (compared with the original one-dimensional
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Figure 2: Illustration of our idea for clipping.

scalars) as large ∆zk1
(θθθt ;x) and small ∆zk2

(θθθt ;x) naturally off-
set each other to make the vector’s norm more stable. Namely,
it is less likely to observe an individual that is either too large
(incurring a large clipping error) or too small (wasting pri-
vacy budgets). Rather than setting the clipping threshold to
a large value to encompass possible outliers, we can set it to
some moderate values and the clipping error reduces to some
constant as K increases, as we will formally show later.

In Figure 2, we illustrate the advantage of our idea. Con-
sider K = 3 with three perturbation vectors z1, z2, and z3, we
first compute ∆z1(θθθt ;x), ∆z2(θθθt ;x), and ∆z3(θθθt ;x), as shown
in the top-left corner. For illustration purposes, each one of
them is pointing towards a different direction. Using the orig-
inal DPZero, we might observe i): large clipping errors if the
loss difference is much larger than the clipping threshold c,
or ii): wasted privacy budgets if the loss difference is much
smaller than c. To avoid these, however, is not easy. As we
have mentioned, simply increasing the threshold c would in-
troduce excessive DP noises (i.e., wasting privacy budget)
whereas decreasing c would make the clipping errors even
larger. Using our idea, the norm of the aggregate vector con-
verges to some value (as we will formally show later), making
it easier to achieve small clipping error without introducing
excessive DP noises.
Comparison with [63]. Recent work [63] also considers
using multiple independent zeroth-order estimates obtained
at different sampled perturbation vectors. However, their so-
lution does not resolve the issue of clipping error. In [63],
for each zk, they apply artificial clipping to ∆zk(θθθt ;x) inde-



pendently. Clearly, the clipping error is not mitigated in their
approach: as shown in our Figure 2, for each perturbation
vector zk, the observed ∆zk(θθθt ;x) may be divergent, leading
to a large clipping error or wasted privacy budget.

5 Our Solution: DP-AggZO

5.1 Algorithm
The complete procedure of our solution, called DP-AggZO,
is outlined in Algorithm 1. As we have mentioned in Sec-
tion 4.3, the main difference from DPZero is that we first
sample a set of K (with K > 1) perturbation vectors from
N (0,Id) independently, and then query the model to com-
pute ∆zk for all zk,k = 1, . . . ,K (Lines 5-10 in Algorithm 1).
Note that the computation of ∆zk(θθθt ;x)’s are run in sequential
orders. Hence, the memory consumption remains the same as
DPZero.

To obtain a differentially private estimate for the sum of
the (approximated) gradients over a batch, we first perform
clipping for each individual record x’s K-dimensional vector
(Lines 11-13 in Algorithm 1)

∆∆∆agg(θθθt ;x) =
1
K
(∆z1(θθθt ;x),∆z2(θθθt ;x), . . . ,∆zK (θθθt ;x)).

We clip the L2 norm of this vector to some pre-determined
threshold c. The clipped vector is expressed as

∆̂∆∆agg(θθθt ;x) =
c

max(c,∥∆∆∆agg(θθθt ;x)∥)
·∆∆∆agg(θθθt ;x). (21)

We denote the k-th dimension of the clipped vector as
∆̂agg,k(θθθt ;x). After clipping is done, for each dimension k,
we inject Gaussian noise vk ∼ N (0,σ2

mc2) (here σm is the
noise multiplier) to the sum of the clipped vectors over the
k-th dimension, i.e., ∑x∈B ∆̂agg,k(θθθt ;x), obtaining

G̃ :=
K

∑
k=1

(
∑
x∈B

∆̂agg,k(θθθt ;x)+ vk
)
· zk (22)

as the DP zeroth-order estimate for the gradient sum for batch
B (Lines 14-15 in Algorithm 1). With learning rate set to η,
the model is updated as

θθθt+1 = θθθt −
η

b
· G̃, (23)

where b is some pre-determined targeted batch size (Line 16
in Algorithm 1).

5.2 Illustration of Reduced Clipping Error
We demonstrate how our solution is able to reduce the clip-
ping error. The detailed proofs are deffered to the full version.
Similar to DPZero, we first define the clipping error for our

Algorithm 1: DP-AggZO
Input: private dataset D of size n; total number of training

steps T ; subsampling rate q; learning rate η; initial
(pre-trained) model parameters θθθ0; perturbation scale
φ; Gaussian noise multiplier σm; clipping threshold c;
Laplace noise parameter ψ for perturbing n; number
of random directions K.

1 Perturb the size of D: ñ = n+Lap(0,ψ).
2 Compute targeted batch size: b = qñ.
3 for t = 1...T do
4 Obtain batch Bt using Poisson sampling, where each

record in D is sampled with probability q .
5 for k = 1...K do
6 Sample zk from the standard Gaussian distribution

N (0,Id). // d is the dimension of model
parameters

7 Compute θθθ
+
t ← θθθt +φ · zk.

8 Compute θθθ
−
t ← θθθt −φ · zk.

9 for x ∈ Bt do
10 Query the model: ∆zk (θθθt ;x) = L(θθθ+

t ;x)−L(θθθ−t ;x)
2φ

11 for x in batch Bt do
12 Obtain K-dimensional vector

∆∆∆agg(θθθt ;x) = 1
K (∆z1(θθθt ;x), . . . ,∆zK (θθθt ;x)).

13 Artificial clipping:

∆̂∆∆agg(θθθt ;x) = min(∥∆∆∆agg(θθθt ;x)∥,c)
c ·∆∆∆agg(θθθt ;x).

14 for each dimension k in vector ∆̂∆∆agg(θθθt ;x)) do
15 Noise injection: ∆̃agg,k(θθθt ;B) =(

∑x∈B ∆̂agg,k(θθθt ;x)
)
+N (0,σ2

mc2).

16 Update model parameters
θθθt+1← θθθt − η

b ·∑
K
k=1 ∆̃agg,k(θθθt ;B) · zk.

Output: Model parameters θ.

DP-AggZO. For any record x, model parameter θθθt , and per-
turbation vectors {zk}K

k=1, we define the clipping error as

erragg(θθθt ,x,{zk}K
k=1) =

∥∆∆∆agg(θθθt ;x)− ∆̂∆∆agg(θθθt ;x)∥
∥∆∆∆agg(θθθt ;x)∥

. (24)

With θθθt and x fixed, this error depends on {zk}K
k=1. In what

follows, we show that this clipping error converges to some
constant as we increase K. We use σ2

x to denote the variance of
∆z(θθθt ;x) on a randomly sampled z. The core argument is that
the norm of the K-dimensional vector ∆∆∆agg(θθθt ;x) converges
to σx√

K
, formalized as follows.

Lemma 3. [Bound on ∥∆∆∆agg(θθθt ;x)∥] Let U > 1 be some
positive constant such that |(∆z j(θθθt ;x))2−E[(∆z j(θθθt ;x))2]|<
U almost surely for every record x, then for every record x,

Pr
[
∥∆∆∆agg(θθθt ;x)∥> σx√

K
+

√
3
√

logK
K
√

K

√
U
]
≤ 1

K2 .



Now that the norm is bounded, we can show that given a
clipping threshold c = βclip · 1√

K
for some βclip, with probabil-

ity at least 1− 1
K2 , the clipping error is also bounded:

erragg(θθθt ,x,{zk}K
k=1)≤

σx

βclip
+Θ

(( logK
K

) 1
4
)
. (25)

When K is large, this upper bound converges to σx
βclip

. We note
that in the above derivation, we did not utilize the Chebyshev’s
inequality or Markov’s inequality which requires that βclip to
be larger than σx. Instead, we rely on the concentration bound
for Bernstein’s inequality, which basically states that the tail
of ∥∆∆∆agg(θθθt ;x)∥ becomes lighter as K increases.
Comparison with DPZero. With K = 1 (i.e., using the orig-
inal DPZero), it is difficult to bound the clipping error to a
small value. In particular, if we assume that ∆z(θθθt ;x) follows
a zero-mean Gaussian distribution, then a sampled value has
at least around 13% probability to be larger than 1.5σx, giv-
ing a clipping error of 1.5σx

βclip
. Alternatively, the distribution

of ∆z(θθθt ;x) may not be as concentrated as a Gaussian: if it
follows a zero-mean Laplace distribution (which has a heavier
tail), then a sampled value has at least around 30% probability
to be larger than 2σx, giving a clipping error of 2σx

βclip
. Using

our method, the clipping error is always upper bounded by
σx

βclip
, for any record x as long as K is large enough.

Simulation results. We provide simulation results to back up
our analysis. The setup is as follows. Given model parameters
θθθ, we first sample a batch of records (denoted as Bt) and K
perturbation vectors {zk}K

k=1 independently. Next, we com-
pute ∆zk(θθθ;x) for each record x ∈ Bt . After this, we clip the
aggregate K-dimensional vector ∆∆∆agg(θθθt ;x) using threshold

c = βclip√
K

for each record x, with βclip set to 200 (the suggested
value in [113]). We measure the maximum clipping error of
any record x ∈ Bt , written as

errmax individual := max
x∈Bt

∥∆∆∆agg(θθθt ;x)− ∆̂∆∆agg(θθθt ;x)∥
∥∆∆∆agg(θθθt ;x)∥

, (26)

and the overall clipping error of batch Bt , written as

errbatch Bt :=
∥∑x∈Bt ∆∆∆agg(θθθt ;x)−∑x∈Bt ∆̂∆∆agg(θθθt ;x)∥

∥∑x∈Bt ∆∆∆agg(θθθt ;x)∥
. (27)

We repeat the above process with K ranging from 1 to 256.
When K = 1, we are simulating the original DPZero. The
results are shown in Figure 3. As K increases, both the max-
imum clipping error of individuals and the clipping error
converge to smaller values. With K = 1, the batch clipping er-
ror could exceed 1 (i.e., the model could be updated opposite
of the original intended direction). On the other hand, as K
increases, this error steadily decreases to some value below
0.5. In addition to that, we also note the correlation between
the maximum individual clipping error and the batch clipping
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Figure 3: Illustration of the clipping errors with respect to
individuals and a batch under different K’s, computed on a
model checkpoint during the fine-tuning process of RoBERTa
(355M) on MNLI dataset.

error, which backs up our heuristic mentioned in Section 4.2;
that is, to reduce the batch clipping error, we target at reduc-
ing the maximum possible individual clipping error. Similar
patterns appear for other models, datasets, and clipping thresh-
olds. We will see how the clipping error fluctuates during the
fine-tuning process in Section 6.

5.3 Analysis
In this subsection, we present the convergence and privacy
guarantees for our DP-AggZO.

Lemma 4 (Convergence rate for DP-AggZO). Assume that
for all θθθ, we have ∇2L(θθθ) ⪯ H where H ⪯ l · Id and
tr(H)/∥H∥op ≤ r. Then, for clipping threshold c = βclip · 1√

K
such that the model is updated as in equation 23, we have

E[L(θθθt+1)|θθθt ]≤−η

(
1− Ex[σx]

βclip
−o(1)

)
· ∥∇L(θθθt)∥2 (28)

+η ·
√

3
(

1− Ex[σx]

βclip
−o(1)

)
· E[∥∇L(θθθt ;x)∥2]√

K
(29)

+
η2 · lr

2
·

β2
clip

K
+

η2 · lr
2

σ
2
m ·β2

clip. (30)

The proof of Lemma 4 is similar to Lemma 2. The main
difference is that we replace the zeroth-order estimate com-
puted on a single random direction specified by z∼N (0,Id)
with a set of zeroth-order estimates computed on {zk}K

k=1
where each zk is independently sampled from the same distri-
bution. We note that the o(1) error comes from the error that
∥∆∆∆agg(θθθt ;x)∥ deviates from its high-probability bound (see
Lemma 3), which converges to 0 as K increases.

The privacy cost of DP-AggZO comes from two parts. The
first part is due to a zero-mean Laplace noise with scale pa-
rameter ψ for perturbing the input size |D|, from which we
then obtain the targeted batch size. The second part is due to
the additive Gaussian noises applied to the ZO estimates com-
puted on a random subset of the input obtained with Poisson
sampling. The overall RDP guarantee is then entailed from



the composition and subsampling lemmas (see, e.g., [1, 71]
for more details). In our experiments, the privacy cost for
releasing a DP estimate for |D| consumes 5% of the over-
all privacy cost, and the rest of the privacy cost is used for
releasing the ZO estimates for T model updates.

Lemma 5 (RDP guarantee for DP-AggZO). Running DP-
AggZO for T iterations with a Poisson sampling rate of q,
Gaussian noise multiplier σm for perturbing the ZO estimates,
and a zero-mean Laplace noise with scale parameter ψ for
perturbing |D|, satisfies (α,ε)-RDP for α ∈ Z,α≥ 2 with

ε =
1

α−1
· log

(
α

2α−1
exp
(

α−1
ψ

)
+

α−1
2α−1

exp
(
−α

ψ

))
+

T
α−1

· log
(
(1−q)α−1(αq−q+1)

+
α

∑
h=2

(
α

h

)
(1−q)α−hqhe(h−1)ε(h)

)
,

where ε(h) = h
2σ2

m
for h ∈ Z,h≥ 2.

The corresponding (ε,δ)-DP can be obtained accordingly
by conversion rules (see [19]).

6 Experiments

In this section, we evaluate the performance of our DP-AggZO
for fine-tuning pre-trained language models.

6.1 Setup
Models. Following prior work [63, 113], we conduct exper-
iments on open-sourced pre-trained models, including the
masked language model RoBERTA-Large (355M) [61] and
the auto-regressive models OPT-1.3B and OPT-6.7B [115].
Datasets. We fine-tune on a wide range of datasets and
tasks. For RoBERTa-Large, we fine-tune the model on six
datasets for different classification tasks, including SST-2
and SST-5 [89] for sentiment analysis (i.e., determine if the
given text is positive/negative), SNLI [14], MNLI [104], and
RTE [31] for natural language inference (i.e., determine if
the given premise and hypothesis are in the relationship of
entailment/neutral/contradiction), and TREC [101] for topic
assignment (i.e., determine which topic the given question
falls under).

For larger models OPT-1.3B and OPT-6.7B that require
more resources to fine-tune, we focus on one classification
task SST-2 and one generation task SQuAD [82] (the fine-
tuned model answers to a given question containing relevant
contexts). We follow the data split of the previous work [116]
and compare DP-AggZO against the following baselines.
DPAdamW. DP-AdamW [59], is based on the classic first-
order method DPSGD that perturbs the sum of (clipped) gra-
dients computed over a batch of records with additive multi-

dimensional Gaussian noises [1]. The difference is that DP-
AdamW adopts the optimizer AdamW [64] when performing
the model updates. DP-AdamW is regarded as the state-of-
the-art method for DP fine-tuning, as it achieves the best
privacy-utility trade-off.

DPZero. DPZero [96, 113] replaces the first-order gradient
with a zeroth-order approximation. This approximation is
obtained as the result of a random vector sampled from the
model’s parameter space times a scalar that is an approxima-
tion to the model’s directional derivative along the sampled
vector. As reviewed in Section 2.3, additive DP noises are
injected to the sum of the (clipped) scalars computed over a
batch of records.

Non-DP baselines. We also include non-DP baselines for ref-
erence, where the models are fine-tuned to convergence (with
no privacy budget limitation). The non-DP version of DP-
AdamW is referred to as AdamW, which adopts the AdamW
optimizer to the standard mini-batch SGD. AdamW is also
seen as the upper bound for the model performance with DP.
The non-DP version of DPZero is referred to as MeZO [68].

Zeroshot. Zeroshot directly tests the pre-trained model on
the test dataset without fine-tuning, providing the strongest
privacy protection for the fine-tuning data. Zeroshot serves as
the lower bound for DP fine-tuning.

Other first-order DP fine-tuning methods, such as DP-
LoRA and DP-Prefix Tuning [59, 110], are not included, as
they often yield similar or inferior utility compared to DP-
AdamW under the same privacy constraints. Overall, DP-
AdamW is the main target that we aim to outperform.

Hyperparameters. For our method DP-AggZO, we consider
two choices of K for each task. On the RoBERTa (355M)
model, we set K to 64 and 256. On the larger models OPT-
1.3B and OPT-6.7B, we set K to 16 and 64 to save the compu-
tation time. We test all baselines and our method under differ-
ent hyperparameters (varying the subsampling rate, learning
rate, and the clipping threshold). We report the best perfor-
mance for each method on each task, following the convention
in the literature. For detailed hyperparameters and the search
grid, please refer to the technical report [12].

Evaluation metric. The performance is measured as the ac-
curacy/F1 score (shown in %) on the test dataset for each task.
Regarding DP, we focus on the (ε,δ)-DP framework with
ε = 2 and 6 with δ = 10−5, as is the standard for evaluating
DP algorithms (e.g., see [1, 32] and prior work [113]). Due
to the scale of the experiments, we have mostly tested the
performance on one random seed. For RoBERTa (355M), the
random seed is fixed to 42; for OPT models (1.3B and 6.7B),
the random seed is fixed to 0 (both are the default setups in
the implementations of prior work [68, 116]). Cursory ex-
periments on other seeds show that the standard deviations
are around 1%. Hence, we have omitted those results. Our
experiments are run on the H20 GPU with 96 GB of memory.



6.2 Main Results

We list the performance of different methods in Tables 1 and 2,
including those without any DP constraint for reference. As a
sanity check, the Zero-shot baseline is consistently the worst
under all setups, motivating fine-tuning over sensitive data to
improve the utility.
DP-AggZO outperforms DPZero. On all tasks and models,
DP-AggZO significantly outperforms DPZero, setting a new
benchmark for differentially private zeroth-order fine-tuning.
Notably, the relative improvement increases as we increase K
for DP-AggZO, which is aligned with our theoretical analysis.
For the RoBERTa (355M) model, for example, DP-AggZO
improves the performance of DPZero from 67.4% to 76.4%
with K = 64, and further improves to 78.2% with K = 256, on
the MNLI dataset under the DP constraint of ε = 6,δ = 10−5.
Similarly, under the same DP constraint but for the OPT-6.7B
model with the SQuAD dataset, DP-AggZO improves the
performance of DPZero from 80.1% to 83.3% with K = 16,
and further improves to 84.0% with K = 64.
DP-AggZO sometimes outperforms DP-AdamW. DP-
AggZO also consistently outperforms the state-of-the-art DP-
AdamW for RoBERTa (355M) model (Table 1). For example,
on TREC dataset, when the DP constraint is ε = 6,δ = 10−5,
DP-AggZO outperforms DP-AdamW by around 2%. On OPT
models (Table 2), the advantage of memory savings for zeroth-
order methods is more notable. In particular, first-order meth-
ods AdamW and DP-AdamW fail on OPT-6.7B, due to its
large consumption of memory, whereas our DP-AggZO per-
forms the best among the zeroth-order methods. For the OPT-
1.3B model, DP-AdamW and DP-AggZO perform pretty close
under the same DP constraints.
Non-DP baselines. Without DP, AdamW (a variant of SGD)
achieves the best overall performance. We attribute this to the
accurate gradient computation of the first-order method (re-
call that all zeroth-order methods computes approximations
of the exact gradient). There are no notable differences be-
tween MeZO and the non-DP versions of our DP-AggZO
as there is no privacy constraint - the zeroth-order gradi-
ents are not clipped in the first place and the models are
trained to convergence (this is also aligned with the observa-
tions from [68]). The gaps between MeZO and its DP ver-
sion DPZero are significantly larger than those between the
non-DP and DP versions of our solution. Take the RoBERTa
model on TREC dataset as an example (Table 1), the gap
due to DP for DPZero is around 7% (when ε = 6,δ = 10−5)
and 11% (when ε = 2,δ = 10−5). On the contrary, for DP-
AggZO with K = 64, the gap due to DP is only 0.8% (when
ε = 6,δ = 10−5) and 3.2% (when ε = 2,δ = 10−5). This im-
provement is due to the reduction of clipping error in DP-
AggZO. Next, we provide possible explanations for the ob-
served results.
Visualizing the clipping error. In Figure 4, we plot the rela-
tive clipping error of the sampled batch in each iteration for

DP-AdamW and our DP-AggZO with ε = 2 and δ = 10−5. For
DP-AdamW, we test clipping threshold of 50,100, and 200.
For DP-AggZO, we set K = 16 and 256. We also include the
setting with K = 1, which corresponds to the DPZero baseline.
With different K’s, the clipping threshold for DP-AggZO is
set to βclip√

K
(so that the additive DP noise remains a constant),

with βclip = 100 or 200. That is, for K = 16, we consider
clipping threshold c = 25 and 50; for K = 256, we consider
clipping threshold of c = 6.25 and c = 12.5. We show the
clipping errors that occurred during the first 200 iterations
out of T = 1000 for readability. Similar patterns appear for
the rest of the fine-tuning process, other models, datasets, and
privacy constraints.

Comparison with DPZero. First, DP-AggZO outperforms
DPZero due to the reduced clipping error. According to our
analysis in Section 5, for DPZero, it is difficult to control
the scale of the zeroth-order gradient that we need to apply
artificial clipping, leading to large and unstable clipping er-
ror. We back up this argument with empirical evidence. First
and foremost, in Figure 4 (b), we observe that even under
the suggested clipping thresholds of [113], the clipping error
can be as large as 6, which means that the sum of the clipped
zeroth-order gradients is in the opposite direction to the sum
of the “unclipped” zeroth-order gradients in some iterations,
contributing to the unsatisfactory privacy-utility trade-offs. In
addition, as we increase the clipping threshold from 100 to
200, the clipping error reduces. However, as we have men-
tioned, this comes at the cost of additional DP noises due
to the increased threshold. In DP-AggZO, with K > 1, we
consider clipping threshold c = βclip√

K
. With βclip fixed, as we

increase K from 1 to 16 and then to 256, the clipping error
reduces while the additive DP noise remains a constant (i.e.,
σ2

mβ2
clip), ultimately improving the convergence rate under

same privacy constraints.

Comparison with DP-AdamW. DP-AggZO outperforms DP-
Adam. The smaller clipping error of DP-AggZO contributes
to this improvement, as we show in Figure 4 (e.g., comparing
the clipping error of DP-Adam with c = 200 and that of DP-
AggZO (K = 256) with c = 200/

√
K = 12.5). Again, similar

to DPZero, directly increasing c for DP-AdamW does not
solve the problem completely, as larger clipping thresholds
in turn require larger DP noises injected, slowing down the
model convergence - the positive term σ2

mc2 · lr increases with
c. We note that the gap between DP-AdamW and DP-AggZO
is less notable on OPT-1.3B, compared with the smaller model
RoBERTa (355M). The reason is that as the model’s size
becomes larger, its spectrum exhibits a more heavy-tailed dis-
tribution, which lead to smaller effective rank (i.e., smaller r)
(e.g., see [69,93]). As a result, using larger clipping thresholds
for DP-AdamW and introducing more DP noises to the model
updates may not have a devastating impact on its performance
(as the relative increase on σ2

mc2 · lr is less significant com-
pared to RoBERTa (355M)), reducing its performance gap



Table 1: Test performance on RoBERTa (355M). The best result is highlighted in bold.

Privacy constraint Algorithm —Sentiment— —Natural Language Inference— —Topic—
SST-2 SST-5 SNLI MNLI RTE TREC

DP-AdamW 91.7 47.5 74.6 73.5 72.8 91.6

ε = 2,δ = 10−5 DPZero 91.8 47.1 73.6 62.7 70.4 83.8
DP-AggZO (K = 64) 92.0 50.5 77.8 74.1 72.9 92.0
DP-AggZO (K = 256) 92.7 51.3 80.4 75.0 74.4 92.8

DP-AdamW 92.4 49.0 81.5 76.3 77.3 92.8

ε = 6,δ = 10−5 DPZero 92.2 49.3 77.8 67.4 71.9 87.6
DP-AggZO (K = 64) 92.9 51.3 82.5 76.4 77.3 94.6
DP-AggZO (K = 256) 93.2 51.5 82.7 78.2 77.6 95.0

AdamW 93.1 56.6 86.4 81.4 83.6 95.9

Non-DP MeZO 92.7 50.8 84.3 79.8 80.0 95.4
DP-AggZO (K = 64) 93.4 51.6 84.9 79.9 80.5 94.8
DP-AggZO (K = 256) 94.0 51.9 86.2 80.5 80.8 95.8

Perfect privacy Zero-Shot 79.0 35.5 50.2 48.8 51.4 32.0

Table 2: Test performance on OPT-1.3B and OPT-6.7B. The best result is highlighted in bold. OOM stands for out of memory.

Privacy constraint Algorithm SST-2 SQuAD
OPT-1.3B OPT-6.7B OPT-1.3B OPT-6.7B

DP-AdamW 91.0 OOM 78.0 OOM

ε = 2,δ = 10−5 DPZero 86.6 92.7 72.3 78.5
DP-AggZO (K = 16) 90.8 93.8 76.3 82.9
DP-AggZO (K = 64) 91.2 94.2 78.3 83.4

DP-AdamW 91.3 OOM 79.2 OOM

ε = 6,δ = 10−5 DPZero 88.2 92.9 74.2 80.1
DP-AggZO (K = 16) 91.3 94.6 77.7 83.3
DP-AggZO (K = 64) 91.4 94.7 79.4 84.0

AdamW 93.6 OOM 81.5 OOM

Non-DP MeZO 91.1 93.8 78.1 83.5
DP-AggZO (K = 16) 92.6 94.6 78.9 84.2
DP-AggZO (K = 64) 93.4 95.5 79.6 85.4

Perfect privacy Zero-Shot 53.6 61.2 26.8 36.5

with DP-AggZO.

Comparison with the results in [59]. The performance of
DP-Adam on MNLI and SST-2 reported here is different
than [59]. The reason is that in our setting, for each dataset,
we follow prior work [113] and sample 512 data points for
each class from the original training dataset, resulting in 1024
and 1536 training data points in total for SST-2 and MNLI,
respectively. This setup is different from and more difficult
than [59], which uses the full dataset for training. Our setup
better reflects real-world scenarios with limited data and is
more challenging for enforcing DP. Hence, the performance
of DP-Adam reported here is lower than [59]. Our reported
numbers match those from [113].

Memory usage and computation. The memory usage of DP-
AggZO on RoBERTa (355M) is provided in Table 3. For DP-
Adam, to save the memory consumption, we process one data
point at each time. Even under this scenario, we note that the
memory cost of DP-AdamW is still much larger than DPZero
(the former runs of out memory on OPT-6.7B model). This is
attributed by two reasons. First, in zeroth-order optimization,
we only need to cache the forward activations and the random
perturbation vector during the forward pass through each layer.
This cost can be as small as w, where w is the maximum layer
width of the network. Our DP-AggZO, regardless of K (i.e.,
the number of random directions), always consumes the same
memory as DPZero, since in our implementation, we query
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(a) DP-AdamW.
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(b) DP-AggZO with K = 1 (i.e., DPZero).
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(c) DP-AggZO with K = 16.
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(d) DP-AggZO with K = 256.

Figure 4: Clipping error comparison for different methods.

the zeroth-order loss difference on different random directions
in a sequential manner (mentioned in Section 5). For first-
order methods that involves backpropagation, all intermediate
activation functions and gradients are cached. Combined with
the gradient itself, gradient-based methods consume at least
three times more memory than ZO methods. Besides, to run
the AdamW optimizer, we also need to store the the first and
second-order momentums and the adjusted gradients, leading
to much larger overall memory usage [65].

Compared with DPZero, DP-AggZO requires more compu-
tation per update, since we query the model’s losses over K
random perturbation vectors for each record (K > 1). How-
ever, due to a faster convergence rate, DP-AggZO reaches a
higher utility in fewer iterations. Overall, the additional com-
putation cost of DP-AggZO is only 2 to 3 times more for
K = 64 (DP-AggZO takes a few hundreds update to converge
while DPZero takes thousands or even tens of thousands).
Consider the much improved utility of DP-AggZO under the
same privacy constraints, we believe this additional computa-
tion cost is reasonable to price to pay.
The small privacy budget regime. We also consider the DP
constraint of ε = 0.5 and ε = 1 with δ = 10−5. On RoBERTa

Table 3: Peak memory usage of DP-AdamW, DPZero, and
DP-AggZO, tested on a H20 GPU. The usage of DP-AggZO
with different K’s is identical. See the full technical report
version for OPT models.

Model Dataset Algorithm Memory

DP-AdamW 10.73 GiB
RoBERTa SST-2 DPZero 2.81 GiB
(355M) DP-AggZO 2.81 GiB

DP-AdamW 11.55 GiB
RoBERTa MNLI DPZero 3.03 GiB
(355M) DP-AggZO 3.03 GiB

DP-AdamW 11.41 GiB
RoBERTa TREC DPZero 2.67 GiB
(355M) DP-AggZO 2.67 GiB

Table 4: Test performance on RoBERTa (355M) under the
small privacy budget regimes, with ε = 0.5 and 1, and δ fixed
to 10−5. The best result is highlighted in bold.

Privacy Algorithm —Dataset—
SST-2 MNLI TREC

DP-AdamW 90.6 62.0 77.6
ε = 0.5, DPZero 90.3 57.1 73.8
δ = 10−5 DP-AggZO (K = 64) 90.6 63.2 90.6

DP-AggZO (K = 256) 90.9 63.4 91.2

DP-AdamW 91.6 68.0 85.0
ε = 1, DPZero 91.2 60.5 82.6
δ = 10−5 DP-AggZO (K = 64) 91.7 68.9 91.2

DP-AggZO (K = 256) 91.9 70.3 92.0

(355M), we consider one dataset for each task, including SST-
2, MNLI, and TREC. The results are shown in Tabel 4. The
improvement of our DP-AggZO over DPZero remains signifi-
cant on MNLI and TREC and is less notable on SST-2. We
suspect that the reason is that SST-2 is a binary classification
task for sentiment analysis, which is easier than the other two
tasks and less sensitive to clipping error.

Next, we provide some ablation studies on DP-AggZO.
Effect of K. In general, larger K leads to better performance
for DP-AggZO. We demonstrate this phenomenon on the
MNLI dataset using the RoBERTa (355M) model. We fix the
subsampling rate to 0.0416, which leads to roughly 64 records
in the sampled batch in each iteration. We fix T = 1000 itera-
tions and vary K from 1,4,16,64,256,512, and 1024 (when
K = 1, it is equivalent to the original DPZero). For each K,
we test clipping thresholds from {0.5,1,2,5,25,50,100,200}
and report the best accuracy. From Figure 5, it is clear that
increasing K leads to improved performance; and the im-
provement becomes less notable when K is large enough (e.g.,
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Figure 6: Performance of DP-AggZO (K = 16,64) on SQuAD
dataset using model OPT-1.3B, with varying learning rate and
clipping threshold, and privacy fixed to ε = 6,δ = 10−5.

beyond 64), aligning with our theoretical analysis.
Effect of clipping threshold and learning rate. The clipping
threshold c depends on K. In general, larger K needs a smaller
clipping threshold since the expected L2 norm of the aggre-
gated K-dimensional vector (recall equation 20) decreases
as K increases. When the clipping threshold is small, we
might in turn choose a larger learning rate η so that the model
converges faster. This is because smaller clipping thresholds,
along with larger K, lead to smaller variances in the model
updates (without scaling with the learning rate). In this case,
we should make the learning rate larger so that the expected
loss decrease is more significant. This is confirmed by Fig-
ure 6. Comparing the performance of K = 16 with K = 64,
the optimal clipping threshold in the search grid is smaller for
the latter. In addition, when K is fixed, larger learning rates
work better on smaller clipping thresholds, and vice versa. For
example, when K = 64, the best performance is achieved at
learning rate η= 4e−5 when the c= 3.75. On the other hand,
when the clipping threshold c = 15, the best performance is
achieved at η = 1e− 5. Overall, if the primary focus is to
achieve a better utility-privacy trade-off, then we recommend
using large K (e.g., K = 64) associated with small clipping
thresholds and large learning rates.

7 Related Work

Fine-tuning with DP. Fine-tuning large scale models using
differential privacy in general adopts the same techniques for

training DP models from scratch. We refer interested readers
to [1, 18, 27, 42, 59, 77, 79, 97, 106, 110] for further read. As
the sizes of models continually grow, some recent research
studies on the computation and memory efficiency of DP
methods, e.g., see [16, 17, 59, 110]. The potential privacy
issue of fine-tuning over models pre-trained on public data is
an open question [98], and is beyond the scope in this work.
DP zeroth-order methods. ZO for fine-tuning large mod-
els [68] was first adopted to the DP literature by [113] in
their workshop version. Later on, [63, 96] follow up on this
direction and propose different variants, demonstrating the
potential and applicability of DPZero methods. The differ-
ence in our work is that we target at reducing the negative
impact on the model’s convergence due to artificial clipping
for ZO. We accomplish this through algorithmic-level modifi-
cations and provide theoretical analysis to back up our design.
Recent work [114] presents an algorithm with asymptotic
improvements over existing DPZero methods, from a purely
theoretical perspective, which assumes that the loss function is
Lipschitz. As we have mentioned in Section 4.1, this assump-
tion may not be valid in general, including LLM fine-tuning.

Without the constraint of differential privacy, using multi-
ple independent zeroth-order estimates does not yield better
utility under the same computation costs, as reported in [68].
We focus on improving the model’s utility with a fixed dif-
ferential privacy constraint. This is achieved by reducing the
clipping error for releasing the aggregate of independent ZO
estimates, at the cost of slightly more computation. As we
have mentioned, directly incorporating multiple independent
ZO estimates to DPZero [63] does not lead to significantly
better utility under the same privacy constraints.
Clipping in DP. Clipping has been extensively studied in
the DP literature [4, 52, 60, 83] and particularly for gradi-
ent clipping in the context of model training, ranging from
traditional convolutional neural networks [1, 79], residual
networks [32, 106], to transformers [59, 110]. Other than
studying the bias-variance trade-off introduced by clipping
(e.g., see [52, 106]), other related interesting problems in-
clude memory-efficient clipping for large model [16], opti-
mizing computation for specific architectures [17], finding
the optimal clipping threshold in deep learning/mean estima-
tion [4, 5, 18, 32, 52, 116], and non-uniform clipping strate-
gies [58, 105]. Finally, as we have mentioned in Section 4.2,
existing clipping strategies for DPSGD do not directly apply
to zeroth-order optimization, motivating this work.

8 Conclusion

In this work, we study the problem of fine-tuning LLMs under
differential privacy. We propose DP-AggZO, a zeroth-order
optimization algorithm with DP. DP-AggZO mitigates the
error due to artificial clipping when enforcing DP over zeroth-
order estimates for gradients. We provide rigorous analysis



and comprehensive experiments to validate its performance,
which is significantly better than prior DPZero and even out-
performs the state-of-the-art DP-AdamW in certain scenarios.

There is still room for improving DP fine-tuning, from
the aspects of saving computation and memory cost while
reducing the clipping error. A more efficient implementation
of our method could also be a low-hanging fruit.
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9 Ethics Considerations

After carefully reviewing the ethics guidelines, we believe
our research was conducted in an ethical manner. We fol-
low the four principles in the Menlo report, “Beneficence”,
“Respect for Persons”, “Justice”, and “Respect for Law and
Public Interest”.
Beneficence. Our work aims to advance memory-efficient
methods for differentially private (DP) fine-tuning of large
language models (LLMs). Differential privacy is a crucial
technique for safeguarding data privacy and mitigating the
risks associated with LLMs. Existing DP fine-tuning meth-
ods either require substantial memory resources, forcing re-
searchers and practitioners with limited hardware to rely on
untrusted cloud providers, potentially exposing sensitive data,
or lead to unsatisfactory model utility, forcing people to forfeit
privacy protections. We propose a memory-efficient solution
that achieve DP and high model utility at the same time, en-
abling DP fine-tuning on local devices with constrained com-
putational resources and making privacy-preserving research
and applications more accessible to a broader audience.
Respect for Persons. In our research, we adhere to this princi-
ple by ensuring that our experiments exclusively use publicly
available datasets and open-sourced models. This approach
eliminates the involvement of individuals whose autonomy or
consent would otherwise need to be considered, and ensures
that no personal data is exposed or at risk. Furthermore, our
use of publicly available resources respects the autonomy of
those who have made their data or models openly accessible
for research purposes.
Justice. Our research adheres to this principle by ensuring
fairness in the design, implementation, and outcomes of our
work. We exclusively use publicly available data and open-
sourced models, avoiding the arbitrary inclusion or exclusion

of any individuals or groups. This approach ensures that no
specific population is targeted based on attributes such as reli-
gion, socioeconomic status, or technical competency. By us-
ing publicly accessible resources, we democratize the benefits
of our research, enabling broader access to privacy-preserving
techniques for fine-tuning large language models.

Moreover, our focus on memory-efficient methods for dif-
ferential privacy aligns with the equitable distribution of re-
search burdens and benefits. The computational resources re-
quired by current methods often create barriers for researchers
and practitioners with limited access to high-performance
hardware. By developing approaches that are computationally
feasible on local devices, we reduce these barriers, enabling
a wider audience to benefit from privacy-preserving technol-
ogy without imposing undue burdens on any specific group.
This equitable approach ensures that the benefits of privacy-
preserving fine-tuning are accessible to a diverse and global
community, including those from under-resourced environ-
ments.

Respect for Law and Public Interest. Our research adheres
to this principle by ensuring compliance with applicable legal
and ethical standards, as well as promoting transparency and
accountability in our methodologies and results. Specifically,
for compliance, we exclusively use publicly available datasets
and open-sourced models, ensuring that our work avoids the
collection, processing, or exposure of sensitive or private in-
formation. By utilizing resources that are openly accessible,
we mitigate potential legal risks related to privacy, intellectual
property, or data ownership. This approach ensures adherence
to relevant data protection laws and avoids actions that could
be construed as trespassing or unauthorized access to systems.
We also prioritize transparency by clearly documenting our
methodologies, experimental setups, and results. This allows
others to reproduce our findings and assess their implications.

10 Compliance with the Open Science Policy

The artifacts are submitted to for evaluation, and are available
at https://zenodo.org/records/15594622. We have pre-
pared the implementation and data necessary to reproduce
the main results presented in this paper. The documentation
mainly focuses on supporting the key message, that is, our
proposed DP-AggZO achieves better test accuracy than the
previous DPZero (which is equivalent to DP-AggZO with
K = 1), and that DP-AggZO achieves comparable and some-
times even better utility than DP-AdamW, under the same
privacy constraints.
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Algorithm 2: DPZero [113]
Input: private dataset D of size n; total number of training

steps T ; subsampling rate q; learning rate η; initial
(pre-trained) model parameters θθθ0; perturbation scale
φ; Gaussian noise multiplier σm; clipping threshold c;
Laplace noise parameter ψ for perturbing n.

1 Perturb the size of D: ñ = n+Lap(0,ψ).
2 Compute targeted batch size: b = qñ.
3 for t = 1...T do
4 Obtain batch Bt using Poisson sampling, where each

record in D is sampled with probability q .
5 Sample z from the standard Gaussian distribution

N (0,Id). // d is the dimension of model parameters
6 Compute θθθ

+
t ← θθθt +φ · zk.

7 Compute θθθ
+
t ← θθθt −φ · zk.

8 for x ∈ Bt do
9 Query the model: ∆z(θθθt ;x) = L(θθθ+

t ;x)−L(θθθ−t ;x)
2φ

10 Artificial clipping:

∆̂z(θθθt ;x) = min(|∆z(θθθt ;x)|,c)
c ·∆z(θθθt ;x).

11 Noise injection:
∆̃z(θθθt ;B) = ∑x∈B ∆̂z(θθθt ;x)+N (0,σ2

mc2).
12 Update model parameters θθθt+1← θθθt − η

b · ∆̃z(θθθt ;B) · z.
Output: Model parameters θ.

A Appendix

A.1 Additional Background
Running the Gaussian mechanism on a random subset of the
input also satisfies RDP [71, 118].

Lemma 6 (Subsampled Gaussian mechanism [71, 118]). Let
M be a mechanism that satisfies (h,ε(h))-RDP for h =
2, . . . ,α (α ∈ Z,α ≥ 2) by injecting Gaussian noises, and
Sq be a procedure that uniformly samples each record of the
input data with probability q (i.e., Poisson sampling). Then
M ◦Sq satisfies (α,ε)-RDP with

ε =
1

α−1
· log

(
(1−q)α−1(αq−q+1)

+
α

∑
h=2

(
α

h

)
(1−q)α−hqhe(h−1)ε(h)

)
.

In particular, when M injects noise sampled from N (0,σ2Id)
to the outcome of function F of sensitivity c, then we have
ε(h) = hc2

2σ2 .

The composition of RDP mechanisms also satisfies RDP.

Lemma 7 (Composition of RDP Mechanisms [70]). If mech-
anisms M1, . . . ,MT satisfy (α,ε1), . . . ,(α,εT )-RDP, respec-
tively, then, M1 ◦ . . .◦MT satisfies (α,∑T

t=1 εt)-RDP.

Finally, we can convert the RDP guarantee of a mechanism
to the classic (ε,δ)-DP one [19].

Lemma 8 (Conversion from RDP to (ε,δ)-DP [19]). If mech-
anism M satisfies (α,ε(α))-RDP for some α ∈ (1,∞), then
M satisfies (ε,δ)-DP for

ε = ε(α)+
log(1/δ)+(α−1) log(1−1/α)− log(α)

α−1
.

DPSGD. After obtaining the noisy gradient sum Gdpsgd as
in equation 5. The model is updated to θθθt+1 = θθθt −η · Gdpsgd

b ,
where b is the targeted batch size. When using Poisson sam-
pling (see e.g., [30, 71]), the targeted batch size is set to qñ
where ñ stands for the DP estimate for n (the perturbation for n
typically takes 5% of the overall privacy budget). The overall
privacy cost (i.e., the privacy parameters) for running DPSGD
for T iterations/updates is the sum of costs for releasing ñ for
once and releasing {Gdpsgd(θθθt ;Bt)}T

t=1.
DPZero. We list the complete procedure of DPZero as in
Algorithm 2.

A.2 Experiment Details
We provide the memory consumption on OPT models in
Table 5. We provide the search grid for the hyperparameters
of DP methods in Tables 6, 7, and 8. For non-DP methods, the
hyperparameters are the same except that there is no artificial
clipping. The results of DP-AdamW on model RoBERTa
(355M) are taken from [113]. The hyperparameters used for
DP-AdamW on OPT-1.3B are in Table 8 (run out of memory
for OPT-6.7B). For OPT models, the size of the training data
in SST-2 and SQuAD is 1000. For RoBERTa (355M), the size
of the training data vary on different datasets, as shown in
Table 9.
Comparison with [63]. DP-ZOPO [63] applies pruning over
the model parameters (i.e., only a subset of the parameters are
updated in each iteration) with a stage-wise selection for the
hyperparameters (i.e., in different iterations, the hyperparam-
eters could be different, e.g., the perturbation scale parameter
φ). Notably, such modifications have no impact on the privacy
cost, as they are either fixed before computing the model’s
losses on the private input data or are determined according to
the updated model parameters (post-processing preserves DP).
DP-ZOPO achieves higher utility than DPZero. However, as
evidenced in their paper [61], the performance gap between
DP-AdamW is still notable. Our DP-AggZO, by reducing
the clipping error due to DP, achieves much higher perfor-
mance compared with DP-ZOPO while surpassing DPSGD
in several benchmark tasks. E.g., DP-AggZO on MNLI us-
ing RoBERTa (355M) achieves an accuracy of 78.2% under
the privacy constraint of ε = 6,δ = 10−5 whereas DP-ZOPO
achieves 74.8% using the same model but under a less restric-
tive privacy constraint of ε = 8,δ≈ 6×10−4.



Table 8: Search grid for the hyperparameters of DP-AdamW.

Hyperparameter Value

Number of epochs {1,5,10,20,25}

Subsampling rate Rates that lead to expected
batch size of {8,32,64}

Clipping threshold 1,10,100,200

Learning rate 10−5,5×10−5,10−4

Table 9: Number of training records for each datasets used
for RoBERTa (355M) and OPT models and the correspond-
ing subsampling rate for Poisson sampling if we want the
expected batch size to be 8. We keep five decimal points.

Dataset Training records Subampling rate

For RoBERTa (355M)

SST-2 1024 0.00781
SST-5 2560 0.00313
SNLI 1536 0.00521
MNLI 1536 0.00521
RTE 1024 0.00781
TREC 2646 0.00302

For OPT-1.3B & OPT-6.7B

SST-2 1000 0.008
SQuAD 1000 0.008

Table 5: Peak memory usage of DP-AdamW, DPZero, and
DP-AggZO (with K = 16,64, and 256), tested on a H20 GPU
and OPT models. We measure the memory usage in GiB, with
OOM standing for out of memory. The usage of DP-AggZO
with different K’s is identical.

Model Dataset Algorithm Memory

DP-AdamW 31.25 GiB
OPT-1.3B SST-2 DPZero 4.13 GiB

DP-AggZO 4.13 GiB

DP-AdamW 35.4 GiB
OPT-1.3B SQuAD DPZero 7.03 GiB

DP-AggZO 7.03 GiB

DP-AdamW OOM
OPT-6.7B SST-2 DPZero 15.24 GiB

DP-AggZO 15.24 GiB

DP-AdamW OOM
OPT-6.7B SQuAD DPZero 18.81 GiB

DP-AggZO 18.81 GiB

Table 6: Search grid for the hyperparameters of DP-AggZO.

Hyperparameter Value

Number of iterations 1000

Subsampling rate Rates that lead to expected
batch size of {8,32,64}

Clipping threshold {1,1.25}×
{1,2,3,4,6,8,10,20,40}

Learning rate {1,2,4,8}×{10−6,10−5}

Table 7: Search grid for the hyperparameters of DPZero.

Hyperparameter Value

Number of iterations {1,2,5,10,20,50,100}×103

Subsampling rate Rates that lead to expected
batch size of {8,32,64}

Clipping threshold {100,200,400}

Learning rate {1,5}×{10−7,10−6,10−5}

A.3 Analyses
Our analyses are based on the assumption that the step size
φ→ 0, and that the models we are fine-tuning have low effec-
tive ranks (see Assumption 1 and Assumption 2).

We first present a proposition that is useful to our analyses.
Recall that ∆z(θθθt ;x) · z stands for the “approximate” zeroth-
order gradient. We are interested in the maximum eigenvalue
for the matrix

ΣΣΣ =cov(∆z(θθθt ;x) · z)

=E

[(
∆z(θθθt ;x) · z

)(
∆z(θθθt ;x) · z

)T

]

−E

[
∆z(θθθt ;x) · z

]
E

[
∆z(θθθt ;x) · z

]T

.

It is easy to verify that ΣΣΣ is positive semi-definite and all its
eigenvalues are positive. Next, we establish an upper bound
for λmax(ΣΣΣ), the maximum eigenvalue of ΣΣΣ.

Proposition 2. When φ→ 0, the maximum eigenvalue of ΣΣΣ

satisfies

λmax(ΣΣΣ)≤ 3 ·E[∥∇L(θθθt ;x)∥2]. (31)

Proof. When φ→ 0, we can show that L(θt+φz;x)−L(θt−φz;x)
2φ

=

zT ∇L(θt ;x). Hence, we have

∆z(θθθt ;x) = zT
∇L . (32)



Since z ∼ N (0,I), we have that E[zzT ] = I. Hence,
E[∆z(θθθt ;x) · z] = ∇L(θt ;x). Then we have

E

[(
∆z(θθθt ;x) · z

)(
∆z(θθθt ;x) · z

)T

]
= E[(zT

∇L(θt ;x))2zzT ]

For each i, j ∈ [d], we have[
E
[(

∆z(θθθt ;x) · z
)(

∆z(θθθt ;x) · z
)T ]]

i j

= E[(zT
∇L(θθθt ;x))2ziz j]

= E[( ∑
r,s∈[d]

∇L(θθθt ;x)r∇L(θθθt ;x)s)zrzsziz j]

Since z ∼ N (0,I), we have E[zrzsziz j] = δrsδi j + δriδs j +
δr jδsi. Here we have adopted the notation of Kronecker delta:
δi j = 1 if i = j; and δi j = 0 if i ̸= j.

ΣΣΣ =E[∥∇L(θθθt ;x)∥2] · Id +2 ·E[∇L(θθθt ;x)∇L(θθθt ;x)T ]

−E[∇L(θθθt ;x)]E[∇L(θθθt ;x)]T

=E[∥∇L(θθθt ;x)∥2] · Id +2 · cov(∇L(θθθt ;x))

+E[∇L(θθθt ;x)]E[∇L(θθθt ;x)]T

Here we adopt the Weyl’s inequality [50] and get

λmax(ΣΣΣ)≤λmax(E[∥∇L(θθθt ;x)∥2] · Id)

+2 ·λmax(cov(∇L(θθθt ;x)))

+λmax(E[∇L(θθθt ;x)]E[∇L(θθθt ;x)]T )

=E[∥∇L(θθθt ;x)∥2]

+2 · (E[∥∇L(θθθt ;x)∥2]−∥E[∇L(θθθt ;x)]∥2)

+∥E[∇L(θθθt ;x)]∥2

=3 ·E[∥∇L(θθθt ;x)∥2]−∥E[∇L(θθθt ;x)]∥2

≤3 ·E[∥∇L(θθθt ;x)∥2]

Alternatively, we can write

tr(cov(∇L(θθθt ;x)) =E[∥∇L(θθθt ;x)∥2]−∥∇L(θθθt)∥2.

Then we have

λmax(ΣΣΣ)≤3tr(cov(∇L(θθθt ;x))+2∥∇L(θθθt)∥2.

Next, we prove the convergence for DPZero. We first recall
a standard assumption for obtaining a dimension-free the
convergence rate (i.e., independent of the model dimension d)
of fine-tuning large language models is the assumption of low
effective rank [44,78,108]. Such assumption was also adopted
in prior work for analyzing the convergence of zeroth-order
methods [68,96,113] and serves as the theoretical foundation
for PEFT methods [2, 51].

Assumption 1 (Local r-effective rank). Let G(θθθt) =
maxx∈D ∥∇L(θθθt ;x)∥. There exists a matrix H(θθθt) ⪯ l · Id
(where d is the model dimension) such that:

1. For all θθθ such that ∥θθθ − θθθt∥ ≤ ηdG(θθθt), we have
∇2L(θθθ)⪯H(θθθt).

2. The effective rank of H(θθθt) is at most r, i.e.,
tr(H(θθθt)/∥H(θθθt)∥op ≤ r.

In the context of DP, to adapt to the injection of random
noises, which may make the distance ∥θθθt+1−θθθt∥ unbounded,
the constraints for the above inequalities to hold are often
relaxed as follows (e.g., see Assumption 3.5 in [113]).

Assumption 2 (Global r-effective rank). There exists a matrix
H⪯ l · Id (where d is the model dimension) such that:

1. For all θθθ, we have ∇2L(θθθ)⪯H.
2. tr(H(θθθt)/∥H(θθθt)∥op ≤ r.

Proof of Lemma 2. By the integral form of Taylor’s Theorem,

L(θθθt+1) = L(θθθt)+∇L(θθθt)
T (θθθt+1−θθθt)

+
∫ 1

0
γ(θθθt+1−θθθt)

T
∇

2L(θθθt + γ(θθθt+1−θθθt))(θθθt+1−θθθt)dγ.

Under Assumption 2, we plug in the update rule for θθθt+1, i.e.,

θθθt+1 = θθθt−1−η

(
∑x∈Bt ∆̂z(θθθt ;x)

)
+u

b · z, where b is the targeted
batch size, and get

L(θθθt+1)≤ L(θθθt)+∇L(θθθt)
T (θθθt+1−θθθt)

+
1
2
(θθθt+1−θθθt)

T H(θθθt+1−θθθt)

=L(θθθt)−
η

b
·∇L(θθθt)

T
((

∑
x∈B

∆̂z(θθθt ;x)
)
+u
)
· z

+
η2
((

∑x∈B ∆̂z(θθθt ;x)
)
+u
)2

2b2 · zT Hz.

We then take conditional expectation with respect to θθθt on
both sides, and get

E[L(θθθt+1)|θθθt ]−L(θθθt)

≤− η

b
·E
[
∇L(θθθt)

T
((

∑
x∈B

∆̂z(θθθt ;x)
)
+u
)
· z
]

+
η2 · |Bt |2 · (1+σ2

m) · l · r · c2

2b2

=− η

b
·∇L(θθθt)

TE
[

∑
x∈Bt

∆̂z(θθθt ;x) · z
]

+
η2 · |Bt |2 · (1+σ2

m) · l · r · c2

2b2

In the first inequality, we have utilized the fact that u is of
zero mean, u and z are independent, each ∆̂z(θθθt ;x) is in the



range of [−c,+c], and that E[zT Hz] = tr(H) ≤ l · r when
z ∼ N (0,Id) . In the second equality, we have got rid of
the term −η

b ·E
[
∇L(θθθt)

T u · z
]

since u is of zero mean, u
and z are independent. The sum over records in batch Bt
disappears due to the linearity of expectation. Next, we plug in
the relationship between ∑x∈Bt ∆̂z(θθθt ;x) and ∑x∈Bt ∆z(θθθt ;x)
and get

E[L(θθθt+1)|θθθt ]−L(θθθt)

≤− η

b
·∇L(θθθt)

TE
[(

(1− err(θθθ,Bt ,z)
)
· ∑

x∈Bt

∆z(θθθt ;x) · z
]

+
η2 · |Bt |2 · (1+σ2

m) · l · r · c2

2b2

=− η|Bt |
b
· ∥∇L(θθθt)∥2 +

η2 · |Bt |2 · (1+σ2
m) · l · r · c2

2b2

+
η

b
·∇L(θθθt)

TE
[
err(θθθ,Bt ,z) ∑

x∈Bt

∆z(θθθt ;x) · z
]

We work on the last term.

∇L(θθθt)
TE
[
err(θθθ,Bt ,z) ∑

x∈Bt

∆z(θθθt ;x) · z
]

=∇L(θθθt)
T

(
E
[
err(θθθ,Bt ,x)

]
E
[

∑
x∈Bt

∆z(θθθt ;x) · z
]

+ cov
(

err(θθθ,Bt ,z), ∑
x∈Bt

∆z(θθθt ;x) · z
))

=|Bt |E
[
err(θθθ,Bt ,z)

]
∇L(θθθt)

T
∇L(θθθt)

+∇L(θθθt)
T cov

(
err(θθθ,Bt ,z), ∑

x∈Bt

∆z(θθθt ;x) · z
)

≤τ|Bt | · ∥L(θθθt)∥2

+∥L(θθθt)∥∥cov
(

err(θθθ,Bt ,z), ∑
x∈Bt

∆z(θθθt ;x) · z
)
∥

By Cauchy-Schwarz inequality, we have

∥cov
(

err(θθθt ,Bt ,z), ∑
x∈Bt

∆z(θθθt ;x) · z
)
∥

≤cov
(

err(θθθt ,Bt ,z)
)
|Bt |
√

λmax(Σ),

where λmax(ΣΣΣ) is the maximum eigenvalue of matrix ΣΣΣ =
cov(∆z(θθθt ;x) · z). We also have ≤ E[err(θθθt ,Bt ,z)2].

Plugging in equation 31, we have that

E[L(θθθt+1)|θθθt ]−L(θθθt)

≤− η|Bt |
b
· (1−E[err(θθθt ,Bt ,z)]) · ∥∇L(θθθt)∥2

+
η|Bt |

b
·
√

3E[(err(θθθt ,Bt ,z)2] ·E[∥∇L(θθθt ;x)∥2]

+

(
η|Bt |

b

)2

· (1+σ2
m) · l · r · c2

2

Next, we set the target batch size b to the actual batch
size |Bt | for simplicity (otherwise there will be some multi-
plicative factors close to 1 which does not affect the overall
landscape), as is done in prior work for analyzing subsampled
DP algorithms [106]. Then we have |Bt |

b = 1, and the proof is
completed.

Proof of equation 17.

err(θθθt ,x,z)≤Ex,z

[
|∆z(θθθt ;x)|
|∆̂z(θθθt ;x)|

]
−1 = 1 ·Pr[|∆z(θθθt ;x)| ≤ c]

+
1
c
·E[|∆z(θθθt ;x)| ·1

{
|∆z(θθθt ;x)|> c

}
]−1

≤ 1
c
·E[|∆z(θθθt ;x)| ·1

{
|∆z(θθθt ;x)|> c

}
].

Proof of equation 18. Applying Cauchy-Schwarz inequality
(E[|X ||Y |]≤ E[|X |2]E[|Y |2]) and Chebyshev’s inequality, for
any c2 > E

[
|∆z(θθθt ;x)|2], we can bound

E[|∆z(θθθt ;x)| ·1
{
|∆z(θθθt ;x)|> c

}
] (33)

≤
√
E[|∆z(θθθt ;x)|2]

√
Pr[|∆z(θθθt ;x)|> c] (34)

≤
E
[
|∆z(θθθt ;x)|2

]
c

. (35)

Proof that E(|∆z(θθθt ;x)|2) = cov
(
∆z(θθθt ;x)

)
. For readability,

we assume ∆z(θθθt ;x) follows some distribution of mean µx
and standard deviation σx, where the randomness is over the
choice of z, then it is easy to verify that µx = 0 (see Proposi-
tion 3). By the law of total variance and plugging in µx = 0,
we have

E
[
|∆z(θθθt ;x)|2

]
=
(
Ex,z[∆z(θθθt ;x)]

)2
(36)

+Ex[varz(∆z(θθθt ;x)|x)] (37)

+varx

(
Ez[∆z(θθθt ;x)|x]

)
(38)

=Ex[σ
2
x ]. (39)

Proof of equation 25. According to Lemma 3, we have

Pr
[
∥∆∆∆agg(θθθt ;x)∥> σx√

K
+

√
3
√

logK
K
√

K

√
U
]
≤ 1− 1

K2 .



Since the probability term is not larger than 1, the clipping
error is smaller than 1 for any record x, we can write

erragg(θθθt ,x,{zk}K
k=1)≤

σx√
K
+
√

3
√

logK
K
√

K

√
U

βclip/
√

K
+

1
K2 (40)

=
σx

βclip
+Θ

(√ logK√
K

)
. (41)

Proof of Lemma 3. Recall Bernstein’s inequality.

Lemma 9 (Bernstein’s inequality). For a sequence of n inde-
pendent random variables Y1, . . . ,Yn with mean µ j, variance
max j var(Yj) ≤ σ2, and suppose that max j |Yj − µ j| < Ymax
almost surely for all j, then for any t > 0,

Pr

[
n

∑
j=1

Yj >
n

∑
j=1

µ j + t

]
≤ exp

(
− t2

2nσ2 + 2
3 tYmax

)
. (42)

In particular, if we set t = 3
√

n logn ·Ymax, then we have

Pr
[ n

∑
j=1

Yj >
n

∑
j=1

µ j +3
√

n logn ·Ymax
]

≤ exp
(
− 9n logn(Ymax)

2

2nσ2 +2
√

n logn(Ymax)2

)
.

Since Ymax > σ, and n > logn we have

9n logn(Ymax)
2

2nσ2 +2
√

n logn(Ymax)2 ≥
9
4

logn.

Hence, if we set t = 3
√

n logn ·Ymax, then we have

Pr
[1

n

n

∑
j=1

Yj >
1
n

n

∑
j=1

µ j +
3
√

logn√
n
·Ymax

]
≤ 1

n2 .

Applying this to ∥∆∆∆(x)∥2
2, we have

Pr
[

K∥∆∆∆(x)∥2 > E[(∆z j(x))
2]+

3
√

logK√
K
·B
]
≤ 1

K2 ,

where B satisfies |(∆z j(x))
2−E[(∆z j(x))

2]|< B almost surely.
Dividing both sides in the probability by n and taking the
square root, we have

Pr
[
∥∆∆∆(x)∥>

√
E[(∆z j(x))2]

K
+

√
3
√

logK
K
√

K

√
B
]
≤ 1

K2 ,

since
√

a+b≤
√

a+
√

b for a,b≥ 0. To complete this proof,
we need to show that E[∆z j(x)] = 0 so that E[(∆z j(x))

2] =
var(∆(x)), which follows from the following proposition.

Proposition 3. ∆z(θθθt ;x) follows a symmetric distribu-
tion. Namely, for any w ∈ R, we have Pr[∆z(θθθt ;x) = w] =
Pr[∆z(θθθt ;x) = −w]. We also have that the distribution has
mean 0, and variance of ∆z(θθθt ;x) equals to E[(∆z(θθθt ;x))2]

We sketch the proof of Propsition 3 as follows. With
model parameter θθθt , record x, and perturbation scale φ fixed,
we define function f(v) = L(θt+φv;x)

2φ
. Then we can write

∆z(θθθt ;x) = f(z)− f(−z). For any u ∈ R, we have

Pr[∆z(θθθt ;x) = w] =
∫

v
Pr[ f (z) = v, f (−z) = v−w]dv

=
∫

v
Pr[z = y; f (y) = v, f (−y) = v−w]dv

=
∫

v
Pr[z =−y; f (−y) = v, f (y) = v−w]dv

=
∫

v
Pr[z =−y; f (y) = v−w, f (−y) = v]dv.

Since z is sampled from N (0,Id), we have that Pr[z = y] =
Pr[z =−y] for any vector y ∈ Rd . Hence, we have

Pr[∆z(θθθt ;x) = w] =
∫

v
Pr[z = y; f (y) = v−w, f (−y) = v]dv

= Pr[∆z(θθθt ;x) =−w].

In addition, when φ→ 0, then E[(∆z(θθθt ;x))2] = ∥∇L(θθθttt ;x)∥2,
since ∆z(θθθt ;x) = zT ∇L(θθθttt ;x) when φ→ 0.

Proof of Lemma 4. Recall that ∑
K
k=1
(

∑x∈B ∆̂agg,k(θθθt ;x) +
vk
)
· zk is used for DP-AggZO for updating the model, where

∆̂agg,k(θθθt ;x) stands for the k-th dimension of the clipped ag-
gregate vector and vk is sampled from N (0,σ2

mc2). Then we
have

L(θθθt+1)≤ L(θθθt)+∇L(θθθt)
T (θθθt+1−θθθt)

+
1
2
(θθθt+1−θθθt)

T H(θθθt+1−θθθt)(θθθt+1−θθθt)

=L(θθθt)−
η

b
·∇L(θθθt)

T
K

∑
k=1

(
∑
x∈B

∆̂agg,k(θθθt ;x)
)
· zk

− η

b
·∇L(θθθt)

T
K

∑
k=1

vk · zk

+
K

∑
k=1

η2
((

∑x∈B ∆̂agg,k(θθθt ;x)
)
+ vk

)2

2b2 · zT
k Hzk

+ ∑
k ̸=k′

η2

2b2 ·
((

∑
x∈B

∆̂agg,k(θθθt ;x)
)
+ vk

)
·
((

∑
x∈B

∆̂agg,k′(θθθt ;x)
)
+ vk′

)
· zT

k Hzk′

We define erragg(θθθt ,x,{zk}K
k=1) =

∥∆agg(θθθt ;x)−∆̂agg(θθθt ;x)∥
∥∆agg(θθθt ;x)∥ . For

readability, we abbreviate it as erragg. It is easy to verify that
erragg is in the range of [0,1) for clipping thresholds larger
than 0.



We then take the conditional expectation on both sides with
respect to θθθt and get

E[L(θθθt+1)|θθθt)]−L(θθθt)

≤−η|Bt |
b
·∇L(θθθt)

TE
[
(1− erragg)

K

∑
k=1

∆agg,k(θθθt ;x) · zk

]
+E

[ K

∑
k=1

η2
(

∑x∈B ∆̂agg,k(θθθt ;x)
)2

2b2

]
· lr+ η2

2b2 ·Kσ
2
mc2 · lr

≤−η|Bt |
b
· ∥∇L(θθθt)∥2

+
η|Bt |

b
·∇L(θθθt)

TE
[
erragg

K

∑
k=1

∆agg,k(θθθt ;x) · zk

]
+

η2|Bt |
2b2 ·E

[ K

∑
k=1
|Bt | ∑

x∈Bt

(
∆̂agg,k(θθθt ;x)

)2
]

+
η2

2b2 ·Kσ
2
mc2 · lr,

where c is the clipping threshold applied to the
norm of the aggregate vector ∆∆∆agg(θθθt ;x) and we

have E
[

∑
K
k=1 |Bt |∑x∈Bt

(
∆̂agg,k(θθθt ;x)

)2
]
≤ |Bt |c2. For

E
[
erragg ∑

K
k=1 ∆agg,k(θθθt ;x) · zk

]
, we apply the same trick as

in the proof for Lemma 2, getting

∥cov
(

erragg,
K

∑
k=1

∆agg,k(θθθt ;x) · zk

)
∥ ≤cov(erragg)

√
1
K

λmax(Σ),

where the extra factor of 1√
K

comes from the fact that the latter
vector is the average of K independent samples. According to
equation 25, we have that for clipping threshold c = βclip · 1√

K
for some βclip, with probability at least 1− 1

K2 , the clipping
error is bounded as

erragg(θθθt ,x,{zk}K
k=1)≤

σx

βclip
+Θ

(( logK
K

) 1
4
)
. (43)

We denote At as the event that erragg(θθθt ,x,{zk}K
k=1)≤

σx
βclip

+

Θ

((
logK

K

) 1
4
)

holds, and let Āt be the event when A does not

happen. P(At)+P(Āt) = 1. Then we can rewrite

E[erragg(θθθt ,x,{zk}K
k=1)]≤

σx

βclip
+Θ

(( logK
K

) 1
4
)
+Θ(

1
K2 ).

(44)

As K increases, the Big-Theta terms converge to 0.
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A Artifact Appendix

A.1 Abstract
The main idea of our proposed method, DP-AggZO, is to
aggregate multiple zeroth-order estimates for the exact gra-
dients, computed over independent perturbation vectors (ran-
dom Gaussian vectors), before enforcing differential privacy
(i.e., artificial clipping, taking the average, and then inject-
ing random DP noises). Compared with the vanilla DPZero,
which is effectively a degenerated version of DP-AggZO
with only one zeroth-order estimate, our DP-AggZO achieves
much better utility under the same privacy constraints. Our
DP-AggZO also outperforms the state-of-the-art DP-AdamW
in some cases. This artifact is used for validating the above
claim.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Security, privacy, and ethical concerns are not applicable to
this artifact as the models and datasets are publicly available.

A.2.2 How to access

Access via Zenodo in https://zenodo.org/records/
15594622.

A.2.3 Hardware dependencies

A workstation or cloud computing node with a GPU (pre-
ferrably with GPU memory larger than 20 GB), e.g., RTX
4090 GPU 24GB, or above (larger GPU memory is needed if
run larger models, e.g., OPT 6.7B).

A.2.4 Software dependencies

Linux system Ubuntu 22.04.4, installed with python 3.9.18,
with torch==2.4.0+cu121, transformers==4.28.1, and opa-
cus==1.4.0. More on enviroments can be found in the file
named “environments.yml” provided.

A.2.5 Benchmarks

We evaluate on RoBERTa (355M) 1, which is a pretrained
model on English language using a masked language model-
ing (MLM) objective, and OPT-1.3B and OPT-6.7B 2, which
are parts of the a suite of decoder-only pre-trained transform-
ers ranging from 125M to 175B parameters.

In the provided script, there are on six datasets for different
classification tasks, including SST-2 and SST-5 3 for senti-
ment analysis (i.e., determine if the given text is positive/neg-
ative), SNLI 4, MNLI 5, and RTE 6 for natural language infer-
ence (i.e., determine if the given premise and hypothesis are
in the relationship of entailment/neutral/contradiction), and
TREC 7 for topic assignment (i.e., determine which topic the
given question falls under). For each dataset, we generate 512
samples for each class for training.

For larger models OPT-1.3B and OPT-6.7B that require
more resources to fine-tune, we focus on one classification
task SST-2 and one generation task SQuAD 8 (the fine-tuned
model answers to a given question containing relevant con-
texts). For each dataset, we use 1000 samples for training.

A.3 Set-up
A.3.1 Installation

Please Use the file named “environments.yml” provided to in-
stall the environment using pip or conda. For testing RoBERTa
(355M), go to folder roberta and install the dataset as specified
in the readme file provided.

A.3.2 Basic Test

After installation of the environment and datasets, to test the
functionality, run the following script in bash.

1https://huggingface.co/FacebookAI/roberta-large
2https://huggingface.co/facebook/opt-1.3b
3https://aclanthology.org/D13-1170/
4https://aclanthology.org/D15-1075/
5https://aclanthology.org/N18-1101/
6https://dl.acm.org/doi/10.1007/11736790_9
7https://aclanthology.org/L00-1018/
8https://aclanthology.org/D16-1264/

https://zenodo.org/records/15594622
https://zenodo.org/records/15594622
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/facebook/opt-1.3b
https://aclanthology.org/D13-1170/
https://aclanthology.org/D15-1075/
https://aclanthology.org/N18-1101/
https://dl.acm.org/doi/10.1007/11736790_9
https://aclanthology.org/L00-1018/


CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS=2
DP_SAMPLE_RATE =0.0208 STEP=500 \

SEED=42 NUM_DIRECTION=64
RANDOM_DIRECTION_SEED =100 LR=6e-4 \

DPZERO_THRESHOLD=1 TASK="MNLI" bash examples
/dpaggzo.sh

This script takes around 80 minutes to run on a RTX 4090
GPU and gives a test accuracy around 72%, which is much
better than the utility of the original DPZero under the same
privacy constraint (around 65%, or refer to Table 2 on Page 9
of their original paper 9).

Results on other datasets can be obtained by changing the
“TASK” parameter. We also provided more examples in the
“readme” file.

A.4 Evaluation workflow
A.4.1 Major Claims

We make two major claims.
(C1): Our DP-AggZO can outperform the vanilla DPZero

in terms of test accuracy under the same privacy con-
straints.

(C2): Our DP-AggZO can sometimes outperform DP-
AdamW in terms of test accuracy under the same privacy
constraints.

A.4.2 Experiments

C1-1: Reproducing DP-AggZO results for MNLI with privacy
level ε = 2. You can run the DP-AggZO experiments for the
MNLI task directly using the following commands:

CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS=2
DP_SAMPLE_RATE =0.0416 STEP=1000 \

SEED=42 NUM_DIRECTION=64
RANDOM_DIRECTION_SEED =100 LR=8e-5 \

DPZERO_THRESHOLD=5 TASK="MNLI" bash examples
/dpaggzo.sh

or

CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS=2
DP_SAMPLE_RATE =0.0416 STEP=1000 \

SEED=42 NUM_DIRECTION=64
RANDOM_DIRECTION_SEED =100 LR=5e-4 \

DPZERO_THRESHOLD=1 TASK="MNLI" bash examples
/dpaggzo.sh

Expected outcome:

• Compute time: 5 hours on RTX 4090, 14 hours on RTX
A5000.

• Test accuracy is ∼74% on RTX A5000 or H20 GPU;
∼71% on RTX 4090 GPU.

9https://arxiv.org/pdf/2310.09639

• Significantly better than vanilla DPZero under the same
privacy level (see below).

C1-2: Reproducing DP-AggZO results with K = 1 (equiv-
alent to DPZero baseline) with privacy level ε = 2.

CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS=2
DP_SAMPLE_RATE =0.0416 STEP=5000 \

SEED=42 NUM_DIRECTION=1
RANDOM_DIRECTION_SEED =100 LR=2e-6 \

DPZERO_THRESHOLD =200 TASK="MNLI" bash
examples/dpaggzo.sh

Expected outcome:

• Compute time: 40 minutes on RTX 4090

• Test accuracy: 65% on RTX 4090 GPU, or can refer to
the original paper: arxiv.org/pdf/2310.09639

Combining the results of C1-1 and C1-2, we can verify
that DP-AggZO outperforms the vanilla DPZero under the
same privacy constraints.

C2-1: Reproducing DP-AggZO results for MNLI with privacy
level ε = 0.5. You can run the DP-AggZO experiments for
the MNLI task directly using the following command:

CUDA_VISIBLE_DEVICES=0 DPZERO_PRIVACY_EPS
=0.5 DP_SAMPLE_RATE =0.0416 STEP=500 \

SEED=42 NUM_DIRECTION=64
RANDOM_DIRECTION_SEED =100 LR=2e-4 \

DPZERO_THRESHOLD=1 TASK="MNLI" bash examples
/dpaggzo.sh

Expected outcome:

• Compute time: 3 hours on RTX 4090, 7 hours on RTX
A5000.

• Accuracy: ∼63.5% on H20 and A5000 GPUs

• Better than DP-AdamW under the same privacy level
(∼ 62%) (see below).

C2-2: Reproducing the result on DP-AdamW using the fol-
lowing fommand:

CUDA_VISIBLE_DEVICES=0 DP_SAMPLE_RATE =0.0416
STEP=1000 SEED=42 LR=1e-4 \

DPSGD_THRESHOLD=10 DPSGD_PRIVACY_EPS =0.5
DPSGD_PRIVACY_DELTA=1e-5 \

TASK="MNLI" bash examples/dpsgd.sh

The results from C2-1 and C2-2 demonstrate that DP-AggZO
can outperform DP-AdamW the same privacy constraints,
but the improvement is not as significant as that for DPZero.
We refer to the “readme” file provided for more examples.

To use this artifact beyond the models presented in

https://arxiv.org/pdf/2310.09639
https://arxiv.org/pdf/2310.09639


A.5 Notes on Reusability
To use this artifact beyond the models presented in this paper,
we would recommend refactoring the code based on the latest
implementation and algorithms of the model of interest. Some
functions/libraries may become obsolete in the future while
the general algorithmic idea of using multiple independent
zeroth-order estimates to reduce clipping error could still
apply.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/
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